Stamford Green Primary School \& Nursery

Mathematics Compendium

"The enchanting charms of this sublime science, mathematics, reveal only to those who have the courage to go deeply into it."

Carl Frederick Gauss

What is the vision for mathematics at Stamford Green?

- Children see themselves as mathematicians, enjoying the challenges of a rich subject, wanting to know more and understand more.
- Children develop a deep understanding of skills and concepts and use these accurately.
- Children are fluent and agile in accurately applying their skills to solve mathematical problems.
- Children relish investigations. They apply concepts they know, seek out patterns, think abstractly, work systematically, are flexible and creative in their strategies, and are persistent in solving challenging problems.
- Children are well-prepared for their future learning through strong foundations and deep mathematical understanding. In addition, they are well-equipped with life skills such as analysis, problem-solving and reasoning.

Our mathematics curriculum is brought to life by our seven commitments:

Abstract

HAPPINESS Our rich and exciting curriculum allows the children to have the confidence to enjoy maths. During lessons, all children are expected and encouraged to get involved and approach their maths learning with a can-do attitude. They get this by adopting a growth mindset from an early age. Understanding that mistakes are part of the learning journey and that making mistakes and learning from these makes us better learners; better mathematicians. As such, the children feel positive about maths as the learning environment and everybody in it has a positive growth mindset.

\section*{I N S P I R IN G}

Through our engaging curriculum, we aim to inspire our children to see the beauty of maths. The way that maths is interconnected through all areas of everyday life, enriching the conversations that all adults should be having with children to make relevant how mathematicians have made and still do make a difference in the world. Through allowing the children to experience a range of different mathematical problems, they will have the confidence to tackle these whilst developing their ability to choose and apply specific strategies in order to approach and solve problems.

LEARNING

Our curriculum has been designed to progressive so that it builds upon and develops children's skills and knowledge so that it can be applied in a variety of different situations. This will be accessed through the use of the maths mastery approach which seeks to develop a deep understanding of maths where a child can use their knowledge of a concept to solve unfamiliar word problems and undertake complex reasoning, using precise mathematical vocabulary. Our maths offer consists of discrete arithmetic teaching sessions as well as arithmetic practise sessions, alongside daily maths lessons that take the whole group of children on a particular learning journey together. Once per week, there will be dedicated problem-solving session with a whole school focus on a particular problem-solving strategy. Before school each day, every child has the opportunity to be immersed in maths by taking part in our 'Early Bird' maths sessions, where children practise retrieval of key concepts and knowledge from learning that has taken place previously. Daily maths lessons will introduce children to new concepts using small steps which build upon one another, making links and 'sniffing out patterns' along the way. Teachers will use 'Fathoms' as a vehicle for deepening the children's knowledge and understanding. These Fathoms should allow for both practise and problem solving at every stage, built in to the structure of the maths lesson so everyone gets to access everything they need. Teachers use Times Tables Rock Stars and My Maths as tools to support the learning at school through home learning. They aim to broadly match home learning tasks to content being taught in maths lessons and, in the case of TTRS, are targeted according to the needs of the children.

TOGETHERNESS

The maths mastery approach enables all pupils to go on the journey of maths mastery together. Using an 'I do, we do, you do' teaching strategy enables children to use teacher modelling in order to practise maths concepts with the support of their classmates. The children value each other's contributions because they are all working on the same thing at the same time. Nobody is left behind because the children understand that everyone sees concepts in different ways and this helps each and every child to further develop their understanding.

V A L U ES

Our school's 22 values all play an important role in maths learning. Part of being a mathematician requires all learners to foster the values of resilience, effort, self-belief and patience. Having a growth mindset equips the children to continue working on a problem by approaching it in a different way, when another doesn't work. In this way, children will demonstrate independence when working in maths.

A M B ITION

Adopting a growth mindset approach to maths mastery allows the children to see themselves as mathematicians. We want the children to strive to be successful and as a result, lessons are planned in a way that gives the children confidence. Where gaps in a child's learning arise, timely interventions allow children to keep up, not catch up. As a school, we are ambitious for our teachers and teaching assessments by investing in their Continuing Professional Development. Providing effective, regular CPD for our staff will ensure that there is a consistent approach to teaching and supporting our children with their maths learning.

ACHIEVEMENT

In order to be successful in all maths lessons, the children will receive immediate feedback through live marking. This means that all learners get what they need to make progress. We have high expectations of the children's achievements and as such strive for the number of our children to achieve the expected standard to be above Surrey and National data at the end of Key Stage 1 and 2. This will also be in line with the same data for Reading and Writing. It is the expectation that all children are fluent with their times tables facts by the end of Year 4, so that they are well-prepared for their Multiplication Tables Check in the summer term.

What are the aims of the national curriculum for mathematics?

The national curriculum for mathematics aims to ensure that all pupils:

- become fluent in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately.
- reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language
- can solve problems by applying their mathematics to a variety of routine and non-routine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions

Mathematics is an interconnected subject in which pupils need to be able to move fluently between representations of mathematical ideas. The programmes of study are, by necessity, organised into apparently distinct domains, but pupils should make rich connections across mathematical ideas to develop fluency, mathematical reasoning and competence in solving increasingly sophisticated problems. They should also apply their mathematical knowledge to science and other subjects.

The expectation is that the majority of pupils will move through the programmes of study at broadly the same pace. However, decisions about when to progress should always be based on the security of pupils' understanding and their readiness to progress to the next stage. Pupils who grasp concepts rapidly should be challenged through being offered rich and sophisticated problems before any acceleration through new content. Those who are not sufficiently fluent with earlier material should consolidate their understanding, including through additional practice, before moving on.

By the end of Year 6 at Stamford Green, our children will...

Behaviours

Attitudes

Skills

Knowledge

Experiences

Our children will demonstrate positive behaviours during maths lessons. They will feel confident to support or challenge each other when discussing or using mathematical concepts as well as be able to choose from a range of strategies to help them approach a maths problem.
Through our progressive curriculum which promotes a growth mindset approach to learning, children will show a positive attitude towards their maths learning. They will develop their values of resilience and self-belief when understanding that making mistakes is part of the learning process. Children will support the thinking that maths isn't always about finding 'the correct answer', but about how they arrived at that answer and understanding why it is correct.
Our detailed curriculum, with learning broken down into small steps, will allow children to add, subtract, multiply and divide. They will be confident and fluent in their recall of number facts including times tables. Through effective modelling of precise mathematical vocabulary by the teacher, children will be able to articulate succinct reasoning as well as demonstrate effective recording methods which show working out. Discretely taught problem-solving lessons will directly teach specific problem-solving strategies which will equip our children to choose the most efficient method in their learning beyond Key Stage 2.
Our carefully considered sequence of learning will make explicit links to previous learning, allowing for retrieval practise as well as the opportunity to notice how concepts build on those they have learned before. The children will use the correct mathematical vocabulary when explaining their reasoning, as modelled by the teacher. Children will be expected to 'say it again better' or use sentence stems to frame their reasoning, incorporating this precise mathematical language used correctly.
We aim to give the children a wide range of experiences which allow them to explore and investigate mathematics. They will use specifically chosen manipulatives and visual representations in order to scaffold the rich discussion

Technology	around the mathematical concepts they are modelling. The children will be able to experience the awe and wonder maths can provide through open-ended problems to solve. Events planned to promote the learning and fluency of times tables facts will raise the profile of maths and motivate the children to develop automaticity in this skill.
We use technology as a tool to provide instant feedback about the children's learning. At home, online tasks are set by the class teachers in order to practise the learning that is happening in school. We prepare our Year 4 children for the Multiplication Tables Check by providing regular practice using simulation software so the children are familiar with the style and layout of the test before they complete the actual check in June. We use a wide range of manipulatives to support the children's mathematical learning, including digital manipulatives where appropriate.	
Sustained	It is our aim that the children leave Stamford Green with a sustained interest in mathematics, having embedded basic mathematical concepts during their time with us. We want the children to transfer to secondary school with the same positive attitude fostered throughout theirtime at Stamford Green because we feel it's vital that they continue to see themselves as mathematicians. With all of this in place, we believe the children will be equipped with the best possible foundations in mathematics which will help them in their future life choices and careers.

British Values and Spiritual, Moral, Social and Cultural Learning in Maths

British Values: Within maths, children are encouraged to consider the views of others, particularly when problem solving. Children work within boundaries to make safe choices during practical activities and behave appropriately, allowing all children the opportunity to work effectively. In maths, children are taught to take turns, share equipment and reviews each other's ideas respectfully. Maths involves working collaboratively to solve problems, offer solutions and help others.

Spiritual: Each maths lesson ensures that the children develop the knowledge, skills, understanding, qualities and attitudes they need to foster their own understanding of the subject. Maths supports spiritual development by engaging children with depth of thinking and problem solving.

Moral: Practical work in maths requires children to co-operate with others and help others where necessary to achieve as a group of pair. These opportunities require children to be selfless and explain mathematical concepts in detail to others. Maths supports moral development by encouraging children to look, discuss and evaluate a range of social and moral issues found in the world.

Social: Social development in enhances in maths lessons are children are provided with opportunities to work individually, with a partner or in a larger group. Maths supports social development by requiring verbal reasoning. Children have opportunities to discuss their learning with their peers and staff.

Cultural: Children acquire a respect for their own culture and that other others, an interest in others' ways of doing things and curiosity about differences. During maths, children are able to share how they carry out calculations and listen to the opinions of others. Maths supports the cultural development of a child by exposing them to a range of different approaches to solving problems and reasoning skills.

The maths curriculum map

	Nursery	Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
$\begin{aligned} & \bar{E} \\ & \frac{D}{5} \\ & \frac{5}{4} \end{aligned}$	Counting and Comparing Use the counting sequence as part of songs and games. (Numbers 0-5)	Number Investigating. recognising and using numbers 0-5	Number Place value (within 10)	Number Place value				
					Number Addition and subtraction		Number Addition and subtraction	Number Addition, subtraction. multiplication and division
			Number Addition and subtraction (within 10)	Number Addition and subtraction		Number Addition and subtraction	Number Multiplication and division A	
$\begin{aligned} & \text { N } \\ & \frac{c}{E} \\ & \frac{5}{5} \\ & 4 \end{aligned}$	Counting and Comparing Develop fast recognition of objects without having to count (subitising) and react to changes in the amount of objects in a group of the same amount (numbers 0 to 3)	Number Investigating. recognising and using numbers 0 -10						
						Measurement Area		Number Fractions A
					Number Multiplication and division A	Number Multiplication and division A	Number Fractions A	
			Geometry Shape	Geometry Shape				Number Fractions B
			Consolidation			Consolidation		Measurement Converting units
	Exploring Number and Pattern Knowing cardinal principle (last number reached tells you the total)	Number 'more than' and 'less than'	Number Place value (within 20)	Measurement Money	$\begin{aligned} & \text { Number } \\ & \text { Multiplication } \\ & \text { and division B } \end{aligned}$	Number Multiplication and division B	NumberMultiplicationand division B	Number Ratio
								Number Algebra
		Number Parts and wholes - addition and subtraction		Number Multiplication and division	$\begin{aligned} & \text { Measurement } \\ & \text { Length and } \\ & \text { perimeter } \end{aligned}$	Measurement Length and perimeter	Number Fractions B	
			Number Addition and					Number Decimals
			subtraction (within 20)			Number Fractions	Number Decimals and percentages	
N을등	Exploring Number and Paftern Linking numerals to amounts, children represent numbers in different ways.	Number Representations including 10 frames	Number Place value (within 50)		Number Fractions A			Number Fractions, decimals and percentages
		Number Parts and wholes - addition and subtraction to 8 including doubles.	Measurement Length and height	Measurement Length and height			Measurement Perimeter and area	Measurement Area perimeter and volume
			Measurement Mass and volume	Measurement Mass, capacity and temperature	Measurement Mass and capacity	Number Decimals A	Statistics	Statistics
$\begin{aligned} & - \\ & \stackrel{\rightharpoonup}{\Phi} \\ & E \\ & E \\ & 5 \end{aligned}$	Problem Solving Solving realworld problems with numbers up to 5 using a range of resources.	Number 'one more' and 'one less'	Number Multiplication and division	Number Fractions	Number Fractions B	Number Decimals B	Geometry Shape	Geometry Shape
		Number Investigating. recognising and using teen numbers. Money			Measurement Money	Measurement Money		
			Number Fractions	Measurement Time			Geometry Position and airection	Geometry Position and direction
			Geometry Position and direction		Measurement Time	Measurement Time		Consolidation and themed projects. Preparation and transition to Key Stage 3
$\begin{aligned} & \text { N } \\ & \stackrel{y}{\Phi} \\ & \frac{E}{E} \\ & \vdots \end{aligned}$	Problem Solving Recording numbers to 5 , children can find the odd one out and give a reason.	Number Number order Clocks	Number Place value (within 100)	Statistics		Consolidation	Number Decimals	
					Geomelry Shape	Geometry Shape		
		Number Sharing	Measurement Money	Number Position and direction			Number Negative numbers	
			Measurement Time		Statistics	Statistics	Measurement Converting units	
		Number Thinking about tens and ones	Consolidation	Consolidation	Consolidation	Geometry Position and direction	Measurement Volume	

Long Term Plan: Early Years Foundation Stage

Milestones - By the end of the EYFS, children at the expected level of development will...

ELG Number

- Have a deep understanding of number to 10 , including the composition of each number;
- Subitise (recognise quantities without counting) up to 5 ;
- Automatically recall (without reference to rhymes, counting or other aids) number bonds up to 5 (including subtraction facts) and some number bonds to 10 , including double facts

ELG: Numerical patterns

- Have a deep understanding of number to 10 , including the composition of each number;
- Subitise (recognise quantities without counting) up to 5 ;
- Automatically recall (without reference to rhymes, counting or other aids) number bonds up to 5 (including subtraction facts) and some number bonds to 10, including double facts

According to the Early Years Statutory Framework, children in Nursery and Reception should be taught:

Developing a strong grounding in number is essential so that all children develop the necessary building blocks to excel mathematically.

Children should be able to count confidently, develop a deep understanding of the numbers to 10 , the relationships between them and the patterns within those numbers. By providing frequent and varied opportunities to build and apply this understanding - such as using manipulatives, including small pebbles and tens frames for organising counting children will develop a secure base of knowledge and vocabulary from which mastery of mathematics is built.

In addition, it is important that the curriculum includes rich opportunities for children to develop their spatial reasoning skills across all areas of mathematics including shape, space and measures. It is important that children develop positive attitudes and interests in mathematics, look for patterns and relationships, spot connections, 'have a go', talk to adults and peers about what they notice and not be afraid to make mistakes

The new vocabulary the Reception children will use will include:

	Tier 1	Tier 2	Tier 3
Place Value	same, more/less, lots	count on/back, number, subitise, order, forwards, backwards, numerals, one more/less, equal to, more/less than, represent, value, digit	partition sort
Addition and subtraction		number bonds, part, whole	number sentence equals
Multiplication and division		double, equal/lly, odd/even	twice as many
Measurement	little, tall, bigger/smaller	longest/tallest days of the week money	calendar months of the year measure
Geometry	high/low	sides, corners, above/below/behind, top/middle/bottom, over/under, curved, flat, on, into, next to, repeat, pattern	faces, pyramids, between, around, through, beneath

In Nursery, the 2-3 year-old children will be faught: Counting and Comparing

Learning Focus	Key skills
Showing enjoyment when number rhymes are sung to them.	Recognise and join in with counting songs and games using actions and voice
Using actions showing recognition of the rhythm of counting.	• Moves in time to counting

Exploring Number and Pattern

Learning Focus	Key skills
Building a tower or creating lines with objects.	\bullet Show finger numbers up to 3
Matching one object with another during play.	\bullet Complete an inset puzzle

Problem Solving

Learning Focus	Key skills
Organises sets of natural or everyday objects in a group.	\bullet Recognises difference and changes in amounts
Uses number names in play.	\bullet Begin to subitise to 5 in familiar scenarios (dice, numicon etc)

In Nursery, the 3-4 year-old children will be taught:

Counting and Comparing

Learning Focus	Key skills
Using the counting sequence in playful contexts.	• Verbally count forwards and backwards up to 5 • Use the language more /less /the same/lots
Developing fast recognition of up to 3 objects without having to count (subitising)	• React to changes of amount in a group up to 3.

Exploring numbers and patterns	
Learning Focus	Key skills
Knowing cardinal principle (last number reached tells you the total)	- Show finger numbers up to 5 - Find the 'odd one out' in a range of contexts.
Linking numerals to amounts and representing numbers in different ways.	- Complete a jigsaw puzzle - Read the labels to match the amount when tidying up. - Subitise for up to 3 objects
Problem Solving	
Learning Focus	Key skills
Solving real-world problems with numbers up to 5 .	- Find 1 more/l less - Building with a range of resources
Recording numbers	- Begin to subitise to 5 in familiar scenarios (dice, numicon etc) - Find the odd one out and give a reason - Recognise and write numerals 0-5

In Reception the children will be faught:

Becoming friends with numbers

Learning Focus	Key skills
Investigating, recognising, playing with and using numbers 1-5	- Count and represent amounts to 5 using concrete resources and pictures - Recognise and write numerals to 5 - Begin to subitise to 5 in familiar scenarios (dice, numicon etc) - Verbally count to 10 forwards and backwards
Investigating, recognising, playing with and using numbers 0-10	- Count and represent amounts $0-10$ using concrete resources and pictures - Recognise and write numerals 0-10 - Subitise confidently to 5 in a range of contexts - Verbally count to 20 forwards and backwards

Parts and wholes

Learning Focus	Key skills
Understanding 'More than' and 'Less than'	- Compare quantities up to 10 in different contexts
Thinking about Addition and Subtraction concepts.	- Recognise parts and whole for numbers to 5. - Begin to use the symbols + , - and $=$ to represent calculations - Begin to recognise that there are number facts that never change - Verbally count to 30 forwards and backwards - Count forwards and backwards from any number to 10
Exploring different representations	- Represent the parts and whole for addition and subtraction using a range of concrete resources and drawings
Knowing about Addition and Subtraction to 8, including doubles.	- Automatically recall number bonds to 5 (addition and subtraction facts) - Subitise up to 10 using a ten frame to support thinking - Verbally count to 30 forwards and backwards starting from any number
	Exploring numbers and patterns
Learning Focus	Key skills
'One More' and 'One Less'	- Count and represent amounts $10-20$ using concrete resources and pictures
Investigating, recognising and playing with teen numbers.	- Recognise and write the numerals 0-20
Number patterns and number order.	- Explore numerical patterns in the number system including odds and evens and doubles - Automatically recall some number bonds to 10 including doubles facts
Sharing	- Investigate the ways in which quantities can be distributed equally
Understanding Place value - tens and ones	- Verbally count forwards and backwards to 50 - Begin to recognise the value of the digits in 2-digit numbers - Count in 10 s to 100

Long Term Plan: Year 1

Milestones - By the end of Year 1, children will demonstrate...

- Count to and across 100, forwards and backwards, beginning with 0 or 1 , or from any given number
- Count, read and write numbers to 100 in numerals; count in multiples of twos, fives and tens
- Identify one more and one less
- Identify and represent numbers using objects and pictorial representations, including the number line
- Use the language of: equal to, more than, less than (fewer), most, least
- Read and write numbers from 1 to 20 in numerals and words.
- Work with numbers up to 20 using addition and subtraction
- Children should begin to solve simple word problems
- Identify halves and quarters
- They need to use a range of measures to describe and compare different quantities such as length, mass, capacity/volume, time and money
- Begin to tell the time - o'clock and half past
- Children should develop their ability to recognise, describe, draw, compare and sort different shapes (2D and 3D) and use the related vocabulary
- Know the days of the week and months of the year

According to the National Curriculum, children in Year 1 and Year 2 should be faught:

The principal focus of mathematics teaching in Key Stage 1 is to ensure that pupils develop confidence and mental fluency with whole numbers, counting and place value. This should involve working with numerals, words and the four operations, including with practical resources [for example, concrete objects and measuring tools].

At this stage, pupils should develop their ability to recognise, describe, draw, compare and sort different shapes and use the related vocabulary. Teaching should also involve using a range of measures to describe and compare different quantities such as length, mass, capacity/volume, time and money.

By the end of Year 2, pupils should know the number bonds to 20 and be precise in using and understanding place value. An emphasis on practice at this early stage will aid fluency.

Pupils should read and spell mathematical vocabulary, at a level consistent with their increasing word reading and spelling knowledge at Key Stage 1.

The new vocabulary the Year 1 children will use will include:

	Tier 1	Tier 2	Tier 3
Place Value	same, more/less, lots count on/back, number, subitise, order, forwards/backwards, numerals, one more/less than, equal to, more/greater than, represent, value, digit	sort, partition, ones, tens, most/least, symbols, exchange, multiples, fewer	count in steps, compare, representation
Addition and subtraction	number bonds, part, whole	number sentence, add/addition/+, subtraction/subtract/ difference between, equals, fact family, problems, 2-digit number	sum, problem
Multiplication and division	double, equal/lly, odd/even,	multiplication, division, arrays, twice as many, column, row, multiples, repeated addition, sharing, grouping	multiplication tables
Fractions		half, quarter, whole, equal parts	three quarters, third, equivalent fractions
Measurement	little tall bigger smaller	shorter/longer, biggest/smallest, weight/mass, heavy(er)/light(er), wid(er)/narrow(er), balanced, length, height, centimetre (cm), non-standard units, longest/tallest/shortestr uler, volume, capacity, volume, month, year, time, analogue, o'clock, half past, second/hour/minutes, before/after, first/next, then/now, today/yesterday/ tomorrow, morning/afternoon, evening/night, chronological order, days of the week, calendar, months of the year, money, coins, notes,	standard units, kilogram (kg), gram (g), litres (I), millilitres (ml), change

		pounds (£), pence (p), half/half full, empty, measure	
Geometry	high/low, sides, corners, above/below/behin d, top/middle/bottom, over/under, curved, flat, on, into, next to, repeat, pattern	2d shapes, rectangle, square, circle, triangle, pentagon, properties, sorting diagram, 3d shapes, cuboids, cubes, cone, spheres, pyramids, cylinders, faces, position, in front of, beside,	pentagon, hexagon, line of symmetry, polygon, prism, clockwise, ordinal

In Year 1, the children will be taught:

Number and Place Value	
Focus	Progression of skills
Count	to and across 100, forwards and backwards, starting at 0,1 or any given number.
	in multiples of 2,5 and 10
read \& write numerals	0-100
read and write words	0-20
identify	one more or one less than a given number
	numbers using objects and pictorial representations including on number lines
represent	numbers in different ways - including using objects and pictorial representations and number lines
use the language	equal to, more than, less than, fewer, most, least
Number - addition and subtraction	
Focus	Progression of skills
Read, write and interpret	statements using the signs + (addition) - (subtraction) = (equals)
Represent \& use number facts	number bonds and related subtraction facts within 20
Add and subtract	1-digit and 2-digit numbers to 20, including zero.
Solve problems	one-step problems with addition and subtraction using concrete objects and pictorial representation
	missing number problems

Skill: Add 1-digit numbers within 10

l | When adding numbers |
| :--- |
| to 10, children can |
| explore both |

Skill: Add 1 and 2-digit numbers to 20

	When adding 1-digit numbers that cross 10 , it is important to highlight the importance of ten ones equalling one ten. In Year 1, this is only done just by counting on. From Year 2, use different manipulatives can be used to represent this exchange alongside number lines to support children in understanding how to partition their jumps.
Skill: Subtract 1-digit numbers within 10	
$7-3=4$ $-900-000-$	Part-whole models, bar models, ten frames and number shapes support partitioning. Ten frames, number tracks, single bar models and bead strings support reduction. Cubes and bar models with two bars can support finding the difference.

In Year 1, subtracting one-digit numbers that cross 10 , is done by counting back, using objects, number tracks and number lines.

From Year 2, children should be encouraged to find the number bond to 10 when partitioning the subtracted number.

Ten frames, number shapes and number lines are particularly useful for this.

Number - multiplication and division

Focus	Progression of skills	
solve	one-step multiplication and division problems with teacher support	
use	concrete objects	
	pictorial representations	
	arrays	
Skill: Solve 1-step problems involving multiplication		
		Children represent multiplication as repeated addition in many different ways. In Year 1, children use concrete and pictorial representations to solve problems. They are not expected to record multiplication formally. In Year 2, children are introduced to the multiplication symbol.

Skill: Solve 1-step problems involving division (sharing)

Children solve problems by sharing amounts into equal groups. In Year 1, children use concrete and pictorial representations to solve problems. They are not expected to record division formally.

In Year 2, children are introduced to the division symbol.

Skill: Solve 1-step problems involving division (grouping)

Children solve problems by grouping and counting the number of groups. Grouping encourages children to count in multiples and links to repeated subtraction on a number line.

They can use concrete representations in fixed groups such as number shapes which helps to show the link between multiplication and division.

Number - fractions	
Focus	Progression of skills
Recognise, find and	half as one of two equal parts of an object, shape or quantity
name	quarter as one of four equal parts of an object, shape or quantity.

Focus	Progression of skills
Compare, describe and solve practical problems for	lengths and heights
	mass/weight
	capacity and volume
	time
Measure and begin to record	Lengths, heights, mass/weight, capacity, volume, time (hours, minutes seconds)
Recognise and know values	All denominations of British coins and notes
Chronologically sequence events	For example by using: - before, after, next, first - today, yesterday, tomorrow - morning, afternoon, evening, night
Recognise and use	language related to dates
Tell the time	- to the hour and half hour
	- draw hands on an analogue clock to show the hour and half hour
Geometry	
Focus	Progression of skills
recognise and	common 2-D shapes
name	common 3-D shapes
describe	position
	direction
	movement

Long Term Plan: Year 2

Milestones - By the end of Year 2, children will demonstrate...

- Count in steps of 2,3,5 from 0, in tens from any number forwards and backwards, in halves and quarters up to 10 as well as in multiples of twos, fives and tens
- Read and write numbers to 100 in numerals and compare these using <, > and =.
- Identify and represent numbers using objects and pictorial representations, including the number line
- Work with numbers up to 100 using addition and subtraction
- Children should develop the ability to solve simple word problems using knowledge of place value and number facts as well as 1 -step problems involving multiplication and division (by sharing and grouping)
- Recall and use multiplication and corresponding division facts for the 2,5 and 10 times tables.
- Multiply and divide using a range of representations including arrays and repeated addition/subtraction.
- Recognise, find, name and write the following fractions ($1 / 3,1 / 4,2 / 4,3 / 4$) of a length, shape, set of objects or quantity.
- They need to use a range of measures to describe and compare different quantities such as length, mass, capacity/volume, temperature, time and money
- Continue to learn to tell the time to 5-minute intervals.
- Children should develop their ability to recognise, describe, draw, compare and sort different shapes (2D and 3D) and use the related vocabulary including, number of sides, vertices, faces, edges and lines of symmetry.
- Know the number of minutes in an hour and hours in a day.

According to the National Curriculum, children in Year 1 and Year 2 should be faught:

The principal focus of mathematics teaching in Key Stage 1 is to ensure that pupils develop confidence and mental fluency with whole numbers, counting and place value. This should involve working with numerals, words and the four operations, including with practical resources [for example, concrete objects and measuring tools].

At this stage, pupils should develop their ability to recognise, describe, draw, compare and sort different shapes and use the related vocabulary. Teaching should also involve using a range of measures to describe and compare different quantities such as length, mass, capacity/volume, time and money.

By the end of Year 2, pupils should know the number bonds to 20 and be precise in using and understanding place value. An emphasis on practice at this early stage will aid fluency.

Pupils should read and spell mathematical vocabulary, at a level consistent with their increasing word reading and spelling knowledge at Key Stage 1.

The new vocabulary the Year 2 children will use will include:

Place Value	Tier 1 same, more/less, lots, count on/back, number, subitise, order,	Tier 2 count in steps, count in multiples, place value, estimate, compare (<, $>,=$, placeholder, hundreds,	ascending, forwards/backwards, numerals, one more/less than, equal representation than, represent,

	shortest, ruler, volume, capacity, volume, month, year, time, analogue, o'clock, half past, second/hour/minute s, before/after, first/next, then/now, today/yesterday/to morrow, morning/afternoon, evening/night, chronological order, days of the week, calendar, months of the year, money, coins, notes, pounds (£), pence (p), half/half full, empty, measure	analogue, digital, value, change	
Geometry	2d shapes, rectangle, square, circle, triangle, pentagon, properties, sorting diagram, 3d shapes, cuboids, cubes, cone, spheres, pyramids, cylinders, faces, position, in front of, beside, inside/outside of, grids, near/far second (2nd), third (3 ${ }^{\text {rd }}$) fourth ($4^{\text {th }}$), direction forwards/backwards, whole turn, half turn, quarter turn, threequarter turn, clockwise, movement, up/down, left/right, between, around, through, beneath	pentagon, hexagon, line of symmetry, polygon, quadrilateral, cylinder, edges, vertex/vertices, prism, faces, anti-clockwise, straight line, rotation (turn), arrange, sequences, right angle (turn)	heptagon, octagon, right angle, horizontal, vertical, ordinal
Statistics		pictograms, tally chart, block diagram, category, sorting, totalling, comparing, tables	bar chart

In Year 2, the children will be taught:
Number and Place Value

Focus	Progression of skills
count	in steps of 2,3,5 from 0 forwards and backwards
	in tens from any number forwards and backwards
	in halves and quarters up to 10
recognise place value	of each digit in a 2-digit number (tens and ones)
identify and estimate	numbers using different representations including number lines
compare and order	numbers up to 100
	Using the signs < > and =
read and write words and numerals	0-100
solve problems	using place value and number facts

Number - addifion and subtraction

Focus	Progression of skills	
add and subtract	Using concrete objects, pictorial representations and mentally: - 2-digit numbers +/- ones - 2-digit numbers +/- tens - 2-digit numbers +/- 2-digit numbers - three 1 -digit numbers	
recall \& use number	addition and subtraction facts to 20 fluently	
ct	derive and use related facts up to 100	
show	addition of numbers can be done in any order (commutative) but that subtraction cannot.	
recognise and use	to check calculations	
	to solve missing number problems	
solve problems	using concrete objects and pictorial representations, involving numbers, quantities and measures	
	applying increasing knowledge of mental and written methods	
Skill: Add 1 and 2-digit numbers to 20		
		When adding 1-digit numbers that cross 10 , it is important to highlight the importance of ten ones equalling one ten. In Year 1, this is only done just by counting on. From Year 2, use different manipulatives can be used to represent this exchange alongside number lines to support children in understanding how to partition their jumps.

Skill: Add three 1-digit numbers

$$
7+6+3=16
$$

When adding three 1digit numbers, children should be encouraged to look for number bonds to 10 or doubles to add the numbers more efficiently.

This supports children in their understanding of commutativity.

Manipulatives that highlight number bonds to 10 are effective when adding three 1 -digit numbers.
Skill: Add 1-digit and 2-digit numbers to 100

When adding single digits to a two-digit number, children should be encouraged to count on from the larger number.

They should also apply their knowledge of number bonds to add more efficiently e.g. $8+5$ $=13$ so $38+5=43$.

Hundred squares and straws can support children to find the number bond to 10 .

Skill: Add two 2-digit numbers to 100

Children can use a blank number line and other representations to count on to find the total.

Encourage them to jump to multiples of 10 to become more efficient.

From Year 3, encourage children to use the formal column method when calculating alongside straws, base 10 or place value counters.

As numbers become larger, straws become less efficient.

In Year 1, subtracting

$$
14-6=8
$$

man

Skill: Subtract 1 and 2-digit numbers to 100

$65-28=37$

one-digit numbers that cross 10 , is done by counting back, using objects, number tracks and number lines.

From Year 2, children should be encouraged to find the number bond to 10 when partitioning the subtracted number.

Ten frames, number shapes and number lines are particularly useful for this.

Children can also use a blank number line to count back to find the difference. Encourage them to jump to multiples of 10 to become more efficient.

From Year 3, encourage children to use the formal column method when calculating alongside straws, base 10 or place value counters. As numbers become larger, straws become less efficient.

Number - multiplication and division

Skill: 10 times table

-000000000000000000

1	2	3	4	5	6	7	8	9	(10)
11	12	13	14	15	16	17	18	19	$(20$
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	90
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	00

Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square. Look for patterns in the ten times table, using concrete manipulatives to support.

Notice the pattern in the digits - the ones are always 0 , and the tens increase by 1 ten each time.

Skill: Solve 1-step problems involving multiplication

Children represent multiplication as repeated addition in many different ways. In Year 1, children use concrete and pictorial representations to solve problems. They are not expected to record multiplication formally.

In Year 2, children are introduced to the multiplication symbol.
Skill: Solve 1-step problems involving division (sharing)

Children solve problems by sharing amounts into equal groups. In Year 1, children use concrete and pictorial representations to solve problems. They are not expected to record division formally.

In Year 2, children are introduced to the division symbol.

Children solve problems by grouping and counting the number of groups. Grouping encourages children to count in multiples and links to repeated subtraction on a number line.

They can use concrete representations in fixed groups such as number shapes which helps to show the link between multiplication and division.

Number - fractions	
Focus	Progression of skills
recognise, find, name and write	1/3, $1 / 4^{\prime} 2 / 4,3 / 4$ of a length, shape, set of objects or quantity
write	simple fractions of number e.g. $1 / 2$ of $6=3$
recognise	equivalence of $2 / 4$ and $1 / 2$
Measurement	
Focus	Progression of skills
choose and use	appropriate standard units to estimate and measure to the nearest appropriate unit: - lengths and heights ($m, \mathrm{~cm}$ with rulers and tape measures) - mass/weight (Kg, g with scales) - capacity and volume (Litres, ml with measuring vessels - Temperature (${ }^{\circ} \mathrm{C}$ with thermometers)
compare and order	lengths, heights, mass/weight and volume and record using > < and =
recognise	symbols for £ and p
combine	amounts (coins/notes) to make a particular value
	different combinations of coins that equal the same amount of money
solve problems	in a practical context involving addition and subtraction of money of the same unit, including giving change.
compare \& sequence	intervals of time
tell and write the time	to five minutes (including quarter past/quarter to the hour)
	draw the hands on an analogue clock to show these times
know	the number of minutes in an hour
	the number of hours in a day

Geometry

Focus	Progression of skills
Identify and describe the properties of	2-D shapes - number of sides - line symmetry in a vertical line
	3-D shapes - number of edges - number of vertices - number of faces
identify	2-D shapes on the surface of 3-D shapes and everyday objects
order and arrange	mathematical objects in patterns and sequences
Use mathematical vocabulary to describe	position, direction and movement - movement in a straight line - rotation as a turn - rotation in terms of right-angle turns clockwise and anticlockwise
Statistics	
Focus	Progression of skills
interpret and construct	simple pictograms
	tally charts
	block diagrams
	simple tables
ask and answer questions	by counting the number of objects in each category
	by sorting categories by quantity
	about totalling and comparing categorical data

	Year 2			
	Maths areas of focus	Arithmetic teaching and practise focus (Fluency Bee)		Problem solving
$\begin{aligned} & \overline{5} \\ & \frac{5}{5} \\ & \frac{5}{4} \end{aligned}$	Number Place value	Block 1 6 and 7	$\begin{aligned} & \bar{\phi} \\ & \text { on } \\ & \text { 응 } \end{aligned}$	Problem Solving Strategies Lesson Thinking about Keeping Track
		Block 2 8 and 9		$\frac{\text { Spot the Shapes } 1}{\text { MCfAP }}$
		$\text { Block } 3$ 10		$\frac{\text { Ladybirds in the Garden }}{\text { NRICH }}$
		Block 4 Comparison to 10		$\begin{aligned} & \text { At the Toy Shop } \\ & \text { MCfAP } \end{aligned}$
	Number Addition and subtraction	Block 5 Addition and subtraction		Heads and Feet NRICH
		Block 6 Ten and a bit		$\frac{\text { A square of circles }}{\text { NZ Maths }}$
$\begin{aligned} & \text { N } \\ & \stackrel{1}{5} \\ & \stackrel{5}{4} \end{aligned}$				Problem Solving Strategies Lesson Thinking about working systematically
		Block 7 Comparison to 20		Jack and the Beanstalk MCfAP
		Block 1 1 more (within 20)	$\begin{aligned} & \text { N } \\ & \mathscr{1} \\ & \text { 8 } \\ & \dot{N} \end{aligned}$	$\begin{gathered} \hline \text { Circles and Oblongs } \\ \text { NZ Maths } \\ \hline \end{gathered}$
	Geometry Shape	Block 2 1 less (within 20)		$\frac{\text { Triangle Animals }}{\text { NRich }}$
		Block 3 Make connections		$\begin{gathered} \hline \text { Biscuit Decorations } \\ \text { NRich } \end{gathered}$
				Card Sharp MCfAP
$\begin{aligned} & \text { 이 } \\ & \text { 듬 } \\ & \text { in } \end{aligned}$	Measurement Money	Block 4 Odd and even		Problem Solving Strategies Lesson Thinking about looking for patterns
				$\frac{\mathrm{Next} \mathrm{Domino}}{\mathrm{NRICH}}$
	Number Multiplication and division	Block 5 Doubles to 20		Multiple Madness Hamilton Trust
				Marbles NZ Maths
		Block 6 Near doubles		$\frac{\text { Missina Middless }}{\text { NRICH }}$
		Block 7 Add 2		$\frac{\text { Street Sequences }}{\text { NRICH }}$ Choose street rumbers appropriate to Y_{2}
N응등		Block 8 Subtract 2		Problem Solving Strategies Lesson
	Measurement Length and height	Block 1 Add through 10	$\begin{aligned} & \text { m } \\ & \text { \& } \\ & \text { O } \\ & \text { n } \end{aligned}$	
	Measurement Mass, capacity and temperature	Block 2 Subtract through 10		
		Block 3 Bonds to 20		
$\begin{aligned} & \text { } \\ & \stackrel{\rightharpoonup}{\omega} \\ & E \\ & E \\ & \vdots \end{aligned}$	Number Fractions	Block 1 How many?	$\begin{aligned} & \dot{Z} \\ & \text { E } \\ & \text { o } \\ & \dot{\omega} \end{aligned}$	Problem Solving Strategies Lesson
		Block 2 Comparison to 100		
	"Measurement Time	Block 1 Introduction to multiplication and division	$\begin{aligned} & \text { \% } \\ & \text { \% } \\ & \text { ס } \end{aligned}$	
		Block 2		
$\begin{aligned} & \text { N } \\ & \text { E } \\ & \text { E } \\ & \text { n } \end{aligned}$	*Statistics	The 2 times-table		Problem Solving Strategies Lesson
	*Geometry Position and direction	Block 3 The 10 times-table		
	Consolidation *Time built in for NC tests earlier this term.	Block 4 The 5 times-table		

Long Term Plan: Year 3

Milestones - By the end of Year 3, children will demonstrate...

- Children in Year 3 develop fluency in using the four operations for whole numbers. They learn written methods to structure their calculations as well as becoming increasingly accurate with their mathematical reasoning.
- Count from 0 in multiples of $4,8,50$ and 100
- Find 10 or 100 more or less than a given number
- Count, read, write and order numbers to 1000 both in numerals and in words
- Add and subtract numbers mentally and using written methods up to 3 digits
- Recall and use multiplication and corresponding division facts for the 3,4 and 8 times tables
- Write and calculate multiplication and division statements using known tables, beginning with mental methods and progressing to written methods.
- Count up and down in tenths
- Recognise, find and write fractions of a set of objects or a number, including unit fractions and non-unit fractions and begin to add and subtract fractions with the same denominator within 1 whole.
- They need to use a range of measures to describe and compare different quantities such as length, mass, capacity/volume, temperature, time and money (giving change in £ and pence).
- Tell the time from an analogue clock using Roman numerals from I to XII and $12 / 24$-hour clocks.
- Know number of seconds in a minute and number of days in each moth, year and leap year.
- Recognise angles as a description of a turn and identify right angles in shapes. Know whether angles are greater than or smaller than a right angle.

According to the National Curriculum, children should be taught:

The principal focus of mathematics teaching in lower Key Stage 2 is to ensure that pupils become increasingly fluent with whole numbers and the four operations, including number facts and the concept of place value. This should ensure that pupils develop efficient written and mental methods and perform calculations accurately with increasingly large whole numbers.

At this stage, pupils should develop their ability to solve a range of problems, including with simple fractions and decimal place value. Teaching should also ensure that pupils draw with increasing accuracy and develop mathematical reasoning so they can analyse shapes and their properties, and confidently describe the relationships between them. It should ensure that they can use measuring instruments with accuracy and make connections between measure and number.

Pupils should read and spell mathematical vocabulary correctly and confidently, using their growing word reading knowledge and their knowledge of spelling.

The new vocabulary the Year 3 children will use will include:

	Tier 1	Tier 2	Tier 3
Place Value	count in steps, count in multiples, place value, estimate, compare (<,>, =), placeholder, hundreds, representation	ascending, descending, 10/100 more, 10/100 less, thousands, identify, flexible partitioning	negative numbers 1000 more/less, round
Addition and subtraction	sum, plus, 3-digit number, commutative, inverse, missing number problem, altogether, total take away/minus	column addition/subtraction estimate	4-digit number, operations, written methods
Multiplication and division	multiplication (times) tables, commutative, x and \div	derived facts, positive integer scaling problems, correspondence problems	factor, product, divisor, remainders
Fractions/Decimals /Percentages	three quarters, third, two quarters, equivalent fractions, unit/non unit fractions, numerator, denominator	tenths	decimal, equivalence, hundredths, integer
Measurement	standard units, estimate, order, record results, kilogram (kg), gram (g), half as, temperature, Celsius, quarter full, three quarters full, litres (I) millilitres (ml), intervals of time, quarter to/past, duration, $\mathrm{m} / \mathrm{cm}, \mathrm{l} / \mathrm{ml}$, degrees $\left(^{\circ}\right)$, sequence, analogue, digital, value, change	millimetre (mm), kilometre (km), Roman numerals, 12hour clock, 24-hour clock, a.m/p.m, noon, midnight, leap year, digital	convert, rectilinear figure

Geometry	pentagon, hexagon, line of symmetry, polygon, quadrilateral, cylinder, edges, vertex/vertices, prism, faces, anti-clockwise, straight line, rotation (turn), arrange, sequences, right angle (turn)	heptagon, octagon, orientations, angles, acute/obtuse/right angles, greater/less than a right angle, horizontal/vertical lines, perpendicular lines, parallel lines, ordinal	trapezium, rhombus, geometric shapes, grid, regular/irregular (polygons), ordinal
Statistics	pictograms, tally chart, block diagram, category, sorting, totalling, comparing, tables	bar chart, one/two- step problem	interpret

In Year 3, the children will be faught:

Number and Place Value

Focus	Progression of skills
count	from 0 in multiples of 4, 8, 50 \& 100
recognise	the place value of each digit in a three-digit number (hundreds, tens and ones)
Identify, represent and estimate	numbers using different representations
find	10 or 100 more or less than a given number
compare and order	numbers up to 1000
read and write	numbers up to 100 in numerals and words
solve	number problems and practical problems
	Number - addition and subtraction
Focus	Progression of skills
Mentally add and subtract	two 2-digit numbers (answers could exceed 100)
	a three-digit number and ones
	a three-digit number and tens
	a three-digit number and hundreds
Use written methods	to add and subtract numbers with up to 3 digits (column addition and subtraction)
estimate	the answer to a calculation
check answers	using inverse operations
solve problems	involving missing numbers
	using place value
	using more complex addition and subtraction
	using number facts

Skill: Add 1-digit and 2-digit numbers to 100

Skill: Add numbers with up to three digits

$$
265+164=429
$$

Skill: Subtract 1 and 2-digit numbers to 100

65

$$
\begin{array}{r}
51 \\
65 \\
-\quad 28 \\
\hline 37 \\
\hline
\end{array}
$$

Children can use a blank number line and other representations to count on to find the total.

Encourage them to jump to multiples of 10 to become more efficient.

From Year 3, encourage children to use the formal column method when calculating alongside straws, base 10 or place value counters.

As numbers become larger, straws become less efficient.

$265+164=429$	Base 10 and place value counters are the most effective manipulatives when adding numbers with up to 3 digits. Ensure children write out their calculation alongside any concrete resources so they can see the links to the written column method. Plain counters on a place value grid can also be used to support learning.
Skill: Subtract 1 and 2-digit numbers to 100	
65 ? 28 $65-28=37$	Children can also use a blank number line to count back to find the difference. Encourage them to jump to multiples of 10 to become more efficient. From Year 3, encourage children to use the formal column method when calculating alongside straws, base 10 or place value counters. As numbers become larger, straws become less efficient.

$$
435-273=162
$$

Base 10 and place value counters are the most effective manipulative when subtracting numbers with up to 3 digits.

Ensure children write out their calculation alongside any concrete resources so they can see the links to the written column method.

Plain counters on a place value grid can also be used to support learning.

Number - multiplication and division

Focus	Progression of skills
recall and use	multiplication and division facts for the $3 x, 4 x$ \& $8 x$ multiplication tables
write and calculate	mathematical statements for multiplication and division using tables that they know
	mathematical statements for two-digit numbers multiplied by onedigit numbers
use	mental strategies progressing to written methods
solve problems including	missing number problems using multiplication and division
	positive integer scaling problems
	correspondence problems in which ' n ' objects are connected to 'm' objects

Skill: 3 times table

Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square. Look for patterns in the three times table, using concrete manipulatives to support.

Notice the odd, even, odd, even pattern using number shapes to support. Highlight the pattern in the ones using a hundred square.

4	8	12	16	20
24	28	32	36	40
44	48	52	56	60

-0000-0000-0000-0000-0000-

Encourage daily counting in multiples, supported by a number line or a hundred square. Look for patterns in the four times table, using manipulatives to support. Make links to the 2 times table, seeing how each multiple is double the twos.

Notice the pattern in the ones within each group of five multiples. Highlight that all the multiples are even using number shapes to support.

Skill: 8 times table

8	16	24	32	40
48	56	64	72	80

Encourage daily counting in multiples, supported by a number line or a hundred square. Look for patterns in the eight times table, using manipulatives to support. Make links to the 4 times table, seeing how each multiple is double the fours.

Notice the pattern in the ones within each group of five multiples. Highlight that all the multiples are even using number shapes to support.

Skill: Multiply 2-digit numbers by 1-digit numbers

Skill: Divide 2-digits by 1-digit numbers (sharing with no exchange)

$$
48 \div 2=24
$$

When dividing larger numbers, children can use manipulatives that allow them to partition into tens and ones. Straws, Base 10 and place value counters can all be used to share numbers into equal groups.

Part-whole models can provide children with a clear written method that matches the concrete representation.

Skill: Divide 2-digits by 1-digit numbers (sharing with exchange)

When dividing numbers involving an exchange, children can use Base 10 and place value counters to exchange one ten for ten ones.

Children should start with the equipment outside the place value grid before sharing the tens and ones equally between the rows.

Flexible partitioning in a part-whole model supports this method.

Skill: Divide 2-digits by 1-digit numbers (sharing with remainders)

When dividing numbers with remainders, children can use Base 10 and place value counters to exchange one ten for ten ones.

Starting with the equipment outside the place value grid will highlight remainders, as they will be left outside the grid once the equal groups have been made.

Flexible partitioning in a part-whole model supports this method.

Number - fractions	
Focus	Progression of skills
recount	up and down in tenths
recognise, find and	
write	that tenths arise from dividing an object into 10 equal parts and in dividing one-digit numbers or quantities by 10 fractions of a discrete set of objects (unit and non-unit fractions with small denominators).
recognise and use	fractions as numbers (unit and non-unit fractions with small denominators)
recognise and show	equivalent fractions with small denominators, using diagrams
add and subtract	fractions with the same denominator within one whole
compare and order	Unit fractions
	fractions with the same denominator
solve problems	that involve all of the above

Measurement

Focus	Progression of skills
measure, compare, add and subtract	lengths (m/cm/mm)
	mass (kg/g)
	volume/capacity (l/ml)
measure	the perimeter of simple 2-D shapes
add and subtract	amounts of money to give change, using £ \& p in practical contexts.
Tell and write the time	from an analogue clock
	using roman numerals I to XII
	using 12 hour and 24 hour clocks.
estimate and read	time with increasing accuracy to the nearest minute
record and compare	time, in terms of minutes, seconds and hours
know	the number of seconds in a minute number of days in a month number of days in a year or leap year.
compare	durations of events
	Geometry
Focus	Progression of skills
draw or make	2-D and 3-D shapes using modelling materials
	$3-\mathrm{D}$ shapes in different orientations and describe them.
recognise	angles as: a property of shape a description of turn.
	that two right angles make a half turn, three make $3 / 4$ of a turn and four right angles make a complete turn.
	right angles
identif	whether angles are greater or less than a right angle
	Statistics
Focus	Progression of skills
interpret and present data	using bar charts, pictograms, tables
solve	one-step and two-step questions using information presented in scaled bar charts, pictograms and tables.

Year 3

	Year 3				
	Maths areas of focus	Arithmetic Practice (Speedy Maths) *indicates new content			Problem solving
$\begin{aligned} & - \\ & \frac{c}{E} \\ & \frac{5}{4} \end{aligned}$	Number Place value		Know 2x, 5x 10x tables and related division facts at speed.	Know doubles and halves to 20.	Probiem Solving Shratoges Lesion Thinking about Keeningtrock
		*Know 3x table at speed	Add 1-digit to 2 digit numbers Subtract 1 -digit from 2 -digit numbers	Add tens to 2-digit numbers Subtract tens from 2 -digit numbers.	Roly Poly MCfAP
		*Know 10 more than 3digit numbers	Know 3x table at speed Know addition and subtraction facts to 20.	Know 2x, 5x 10x tables and related division facts at speed.	$\frac{\text { One of Thity-5ix }}{\text { NRICH }}$
	Number Addlition and subtraction	*Know 10 less than 3-digit numbers.	Know 3x table at speed Double and half numbers to 20 at speed.	Know 2x, 5x 10x tables and related division facts at speed.	$\frac{\text { What do you need? }}{\text { NRiCH }}$
		*Know 4x table at speed	Know 10 more than 3-digit numbers Know 10 less than 3 -digit numbers	Know addition and subtraction facts to 20. $2 \mathrm{x}, 5 \mathrm{x}, 10 \mathrm{x}$ tables including division facts.	$\frac{\text { Odds and Evens }}{\text { MCfAP }}$
		*Add two tens at speed	Know 4x table at speed Know 3x table at speed	Add and subtract 2-digit to 1-digit at speed	$\frac{\text { Eour Colours }}{\text { NRICH }}$
$\begin{aligned} & \text { N } \\ & \text { ह } \\ & \frac{5}{5} \\ & \frac{5}{4} \end{aligned}$			Add two tens at speed Know $3 x$ and $4 x$ tables at speed	Know 10 more and 10 less than 3 digit numbers	
		*Know 6x table at speed	Add two tens at speed Know pairs of numbers to 30 and 40 .	Add and subtract tens from 2-digit numbers.	$\frac{\text { Card Ticks }}{\text { MCfAP }}$
	Number Multiplication and Division A	*Add 1-digit to 3 -digit numbers	Know 3x, 4x and 6x table at speed Add two tens at speed.	Know division facts for $2 \mathrm{x}, 5 \mathrm{x}, 10 \mathrm{x}$ tables at speed.	$\frac{\text { Asquare of circles }}{\text { NZ Maths }}$
		*Subtract 1-digit from 3digit numbers	Know 3x and 6x tables at speed. Add two tens at speed.		$\frac{\text { School Fair Neckiaces }}{\text { NRich }}$
		"Know mixed tables 2/3/4/5/6/10 at speed.	Add 1-digit to 3-digit numbers Subtract 1 -digit from 3 -digit numbers		$\frac{\text { King Amold }}{\text { MCfAP }}$
		*Subtract two tens at speed.	Know mixed $2 \mathrm{x}, 3 \mathrm{x}, 4 \mathrm{x}, 5 \mathrm{x}, 6 \mathrm{x}, 10 \mathrm{x}$ tables af speed.	Add two tens at speed Know division facts for $2 \mathrm{x}, 5 \mathrm{x}, 10 \mathrm{x}$ tables.	$\frac{\text { Ieddy Town }}{\text { NRich }}$
$\begin{aligned} & \text { 잉 } \\ & \text { 등 } \end{aligned}$	Number Multiplication and Division B		Know 2x, 3x, 4x, 5x, 6x, 10x tables at speed Add and subtract two tens at speed.	Know 10 more and 10 less than 3-digit numbers.	
		*Know \div facts relating to $6 x$ table at speed.			$\frac{\text { Toothpick Squares }}{\text { NZ Matns }}$
		*Mentally add pairs of 2digit numbers at speed	Know division facts relating to the $6 x$ table at speed	Know 2x, 3x, 4x, 5x, 6x, 10x tables at speed.	$\frac{\text { Domino Sets }}{\text { NRICH }}$
	Measurement Length and perimeter		Mentally add pairs of 2-digit numbers Subtract 1-digit from 2-digit at speed	Double/half numbers to 20 . Know +/- facts to 20, Know \div facts for 6 x table	$\frac{\text { Reversing Numbers }}{\text { NZ Matns }}$
		*Know ㄴfacts relating to 4 x table at speed.	Mentally add pairs of 2-digit numbers		$\frac{\text { cannon Bolls }}{\text { NZ Maths }}$
		"Mentally subtract pairs of 2-digit numbers.	Know pairs of numbers to 20		$\frac{\text { LShaped Models }}{\text { PNS }}$
N을등	Number Fractions A		Mentally subtract pairs of 2-digit numbers Add 1 -digit to 3 -digit numbers	Know 2x, 3x, 4x, 5x, 6x, 10x tables Know division facts for $4 \mathrm{x}, 2 \mathrm{x}, 5 \mathrm{x}, 10 \mathrm{x}$	Probiem solving Statogios Lesicon
		*Know ́facts relating to $3 x$ table at speed.	Mentally add and subtract pairs of 2-digit numbers.		
		*Know pairs of numbers to 100	Know division facts relating to 3 x table Mentally + and - pairs of 2-digit numbers.	Know 2x, 3x, 4x, 5x, 6x, 10x tables.	
	Measurement Mass and capacity		Know pairs of numbers to 100 Know division facts for 3x, 4x, 6x tables		
		*Know - facts for mixed tables at speed $223 / 4 / 5 / 5 / 10)$	Know pairs of numbers to 100. Double and half numbers to 20 at speed.	Mentally add and subtract pairs of 2-digit numbers.	
			Mentally + and - pairs of 2-digit numbers + and - 1-digit and 3-digit numbers	Know 2x, 3x, 4x, 5x, 6x, 10 x tables and division facts.	
$\begin{aligned} & \bar{\Phi} \\ & \stackrel{1}{6} \\ & E \\ & 5 \end{aligned}$	Number Fractions B		Know 2x, 3x, 4x, 5x, 6x, 10x tables and division facts.	Know pairs of numbers to 100	$\begin{aligned} & \text { Probiem solving Sratoóos } \\ & \hline \text { lesson } \end{aligned}$
		*To multiply any number by 10 at speed.	Know 2x, 3x, 4x, 5x, 6x, 10x tables and division facts.	Know pairs of numbers to 100.	
	Measurement Money	*To \div numbers ending in zero by 10 at speed.	Know 2x, 3x, 4x, 5x, 6x, 10x tables and division facts.	To multiply any number by 10 at speed.	
		*Add tens to 3 -digit numbers at speed	To \div numbers ending in zero by 10 at speed, Know pairs of numbers to 100 .	Know 2x, 3x, 4x, 5x, 6x, 10x tables and division facts.	
	Measurement Time	*Subtract tens from 3digit numbers at speed	Add tens to 3 -digit numbers at speed To x and \div numbers by 10 at speed.	Know 2x, 3x, 4x, 5x, 6x, 10x tables and division facts.	
		*To say 100 more than numbers to 3 -digit.	Subtract tens from 3-aligit numbers. Know pairs of numbers to 100 .	Know 2x, 3x, 4x, 5x, 6x, 10 x tables and division facts at speed	
$\begin{aligned} & \text { N } \\ & \text { } \\ & \text { E } \\ & \text { E } \end{aligned}$		*To say 100 less than numbers to 3 -digit	To say 100 more than numbers to 3 -digit. Know pairs of numbers to 20.	Know 2x, 3x, 4x, 5x, 6x, 10x tables and division facts.	Probiem Solving Srategies Lesion
	Geometry Shape	"To add hundreds to 3digit numbers at speed.	To say 100 more/less than numbers to 3digit. To x and \div any number by 10	Know $2 \mathrm{x}, 3 \mathrm{x}, 4 \mathrm{x}, 5 \mathrm{x}, 6 \mathrm{x}, 10 \mathrm{x}$ tables and division facts. Know pairs of tens to 100.	
		*To - hundreds from 3digit numbers at speed.	To say 100 more/less than numbers to 3digit. Know pairs of numbers to 100 .	To add hundreds to 3 -digit numbers at speed Know 2x, 3x, 4x, 5x, 6x, 10x tables and \div facts.	
	Statistics		To +/ -hundreds and 3-digit numbers and Add tens to 3 -digit numbers at speed.	Know 2x, 3x, 4x, 5x, 6x, 10x tables and division facts.	
		*Double and half tens at speed	Know 2x, 3x, 4x, 5x, 6x, 10x tables and \div facts. Add 1's to 3 -digit numbers at speed.	Mentally add and subtract pairs of 2-digit numbers	
	Consolidation		Know 2x, 3x, 4x, 5x, 6x, 10x tables and division facts. +/- pairs of 2 -digit numbers.	Double and half tens at speed.	

Long Term Plan: Year 4

Milestones - By the end of Year 4, children will demonstrate...

By the end of Year 4 children have memorised the multiplication tables up to and including the $12 x$ table and use these with precision and confidence. They develop fluency in using formal written methods for addition and subtraction and develop formal written methods for multiplication and division.

- Compare and order numbers beyond 1000 and find 1000 more and less than any number
- Round any number to the nearest 10,100 or 1000
- Count from 0 in multiples of 6, 7, 9, 25 and 1000
- Recognise Roman numerals I to C
- Recall and use multiplication and division facts for tables up to 12×12
- Add and subtract 4-digit number using an efficient written method (column)
- Multiply and divide 2 and 3-digit numbers by 1 -digit numbers using a written format
- Count up and down in hundredths
- Recognise and write fractions and decimals of any number of tenths or hundredths
- Recognise and write decimal equivalents of $\frac{1}{2}, \frac{1}{4}$ and $\frac{3}{4}$
- Convert hours to minutes, minutes to seconds, years to months and weeks to days
- Solve 2-step problems involving the 4 operations and written methods where possible
- Measure and calculate the perimeter of a rectilinear figure (including squares) in centimetres and metres
- Understand angles as the measurement of a turn. Compare acute and obtuse angles with right angles.
- Find the area of rectilinear shapes by counting squares
- Round decimals with one decimal place to the nearest whole number

According to the National Curriculum, children should be faught:

The principal focus of mathematics teaching in lower Key Stage 2 is to ensure that pupils become increasingly fluent with whole numbers and the four operations, including number facts and the concept of place value. This should ensure that pupils develop efficient written and mental methods and perform calculations accurately with increasingly large whole numbers.

At this stage, pupils should develop their ability to solve a range of problems, including with simple fractions and decimal place value. Teaching should also ensure that pupils draw with increasing accuracy and develop mathematical reasoning so they can analyse shapes and their properties, and confidently describe the relationships between them. It should ensure that they can use measuring instruments with accuracy and make connections between measure and number.

By the end of Year 4, pupils should have memorised their multiplication tables up to and including the 12 multiplication tables and show precision and fluency in their work.

Pupils should read and spell mathematical vocabulary correctly and confidently, using their growing word reading knowledge and their knowledge of spelling.

The new vocabulary the Year 4 children will use will include:

	Tier 1	Tier 2	Tier 3
Place Value	ascending, descending, 10/100 more, 10/100 less, thousands, identify, flexible partitioning	negative numbers, 1000 more/less, round	ten thousands, one hundred thousands, one million
Addition and subtraction	column addition/subtraction estimate	4-digit number, operations, written methods	
Multiplication and division	derived facts, positive integer scaling problems, correspondence problems	factor pairs, short multiplication, factor product, divisor, remainders	common factors, dividend, quotient
Fractions/Decimals /Percentages	tenths	decimal, decimal places, decimal point, equivalence, hundredths, integer, convert, proper/improper fractions, mixed numbers	thousandths, per cent (\%)
Measurement	millimetre (mm), kilometre (km), Roman numerals, 12hour clock, 24-hour clock, a.m/p.m, noon, midnight, leap year, digital	rectilinear figure, area, perimeter, convert, decimal notation	
Geometry	heptagon, octagon, orientations, angles, acute/obtuse/right angles, greater/less than a right angle, horizontal/vertical lines, perpendicular lines, parallel lines, ordinal	isosceles, equilateral, scalene, trapezium, rhombus, parallelogram, geometric shapes, co-ordinates, first quadrant, grid, translation, plot, x / y axis, regular/irregular polygon	reflex angles
Statistics	bar chart, one/twostep problem	time graph, discrete/continuous data, interpret	timetable, line graph

In Year 4, the children will be taught:	
Number and Place Value	
Focus	Progression of skills
count	in multiples of 6, 7, 9, 25 and 1000
count	backwards through zero to include negative numbers
find	1000 more or less than a given number
recognise	the place value of each digit in a four-digit number (thousands, hundreds, tens, and ones)
order and compare	numbers beyond 1000
identify, represent and estimate	numbers using different representations
round	any number to the nearest 10, 100 or 1000
solve	number and practical problems that involve all of the above and with increasingly large positive numbers
read	roman numerals to $100(1$ to C) and know that over time, the numeral system changed to include the concept of zero and place value.

Number - addition and subtraction					
Focus	Progression of skills				
add and subtract	numbers with up to 4 digits using the written methods of columnar addition and subtraction where appropriate				
check answers	by estimating by using inverse operations				
solve	two-step problems involving addition and subtraction in contexts, deciding which operations and methods to use and explaining why				
Skill: Add numbers with up to four digits					
					Base 10 and place value counters are the most effective manipulatives when adding numbers with up to 4 digits. Ensure children write out their calculation alongside any concrete resources so they can see the links to the written column method. Plain counters on a place value grid can also be used to support learning.

Skill: Subtract numbers with up to four digits

$$
4,357-2,735=1,622
$$

Base 10 and place value counters are the most effective manipulatives when subtracting numbers with up to 4 digits.

Ensure children write out their calculation alongside any concrete resources so they can see the links to the written column method.

Plain counters on a place value grid can also be used to support learning.

Number - multiplication and division	
Focus	Progression of skills
recall	multiplication and division facts for multiplication tables up to 12×12 at speed
use	place value, known and derived facts to multiply and divide mentally including: - multiplying by 0 and 1 ; - dividing by 1 ; - multiplying together three numbers
recognise	and use factor pairs and commutativity in mental calculations
use formal written layout	to multiply two-digit and three-digit numbers by a one-digit number
solve problems	involving multiplying and adding including: - using the distributive law to multiply two-digit numbers by one digit - integer scaling problems - harder correspondence problems such as n objects are connected to m objects.

8目目目目目目目

6	12	18	24	30
36	42	48	54	60
66	72	78	84	90

Encourage daily counting in multiples， supported by a number line or a hundred square．Look for patterns in the six times table，using manipulatives to support．Make links to the 3 times table，seeing how each multiple is double the threes．

Notice the pattern in the ones within each group of five multiples． Highlight that all the multiples are even using number shapes to support．

Skill： 9 times table

9	18	27	36	45
54	63	72	81	90

Encourage daily counting in multiples both forwards and backwards．This can be supported using a number line or a hundred square．Look for patterns in the nine times table，using concrete manipulatives to support．

Notice the pattern in the tens and ones using the hundred square to support as well as noting the odd，even pattern within the multiples．

E8K484888

7	14	21	28	35
42	49	56	63	70

Encourage daily counting in multiples both forwards and backwards, supported by a number line or a hundred square.

The seven times table can be trickier to learn due to the lack of obvious pattern in the numbers, however they already know several facts due to commutativity.

Children can still see the odd, even pattern in the multiples using number shapes to support.

Skill: 11 times table

Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square.

Look for patterns in the eleven times table, using concrete manipulatives to support.

Notice the pattern in the tens and ones using the hundred square to support. Also consider the pattern after crossing 100.

Skill: 12 times table

12	24	36	48	60
72	84	96	108	120
132	144			

Encourage daily counting in multiples, supported by a number line or a hundred square. Look for patterns in the 12 times table, using manipulatives to support. Make links to the 6 times table, seeing how each multiple is double the sixes.

Notice the pattern in the ones within each group of five multiples. The hundred square can support in highlighting this pattern.

Skill: Multiply 2-digit numbers by 1-digit numbers

Informal methods and the expanded method are used in Year 3 before moving on to the short multiplication method in Year 4.

Place value counters should be used to support the understanding of the method rather than supporting the multiplication, as children should use times table knowledge.

Skill: Multiply 3-digit numbers by 1-digit numbers

When moving to 3 - digit by 1-digit multiplication, encourage children to move towards the short, formal written method. Base 10 and place value counters continue to support the understanding of the written method.

Limit the number of exchanges needed in the questions and move children away from resources when multiplying larger numbers

Skill: Divide 2-digits by 1-digit numbers (sharing with exchange)

Skill: Divide 2-digits by 1-digit numbers (sharing with remainders)

When dividing numbers with remainders,
children can use Base 10 and place value counters to exchange one ten for ten ones.

Starting with the equipment outside the place value grid will highlight remainders, as they will be left outside the grid once the equal groups have been made.

Flexible partitioning in a part-whole model supports this method.

Skill: Divide 3-digits by 1-digit numbers (sharing)

Children can continue to use place value counters to share 3digit numbers into equal groups.

Children should start with the equipment outside the place value grid before sharing the hundreds, tens and ones equally between the rows. This method can also help to highlight remainders.

Flexible partitioning in a part-whole model supports this method.

Number - fractions including decimals

Focus	Progression of skills
count	up and down in hundredths
recognise	families of common equivalent fractions and show these using diagrams
	that hundredths arise when dividing an object by one hundred and dividing tenths by ten
recognise and write	decimal equivalents of any number of tenths or hundredths
	decimal equivalents to one quarter, one half and three quarters
add and subtract	fractions with the same denominator
find	the effect of dividing a one-digit or two-digit number by 10 and 100 identifying the value of the digits in the answer as ones, tenths and hundredths
round	decimals with one decimal place to the nearest whole number
compare	numbers with the same number of decimal places up to two decimal places
solve problems	involving: - increasingly harder fractions to calculate quantities; - fractions to divide quantities including non-unit fractions where the answer is a whole number
	simple measure and money problems involving fractions and decimals to two decimal places

Measurement					
Focus	Progression of skills				
convert	between different units of measure [for example, kilometre to metre; hour to minute]				
measure and calculate	the perimeter of a rectilinear figure (including squares) in centimetres and metres				
the area of rectilinear shapes by counting squares					
estimate, compare and calculate	different measures, including money in pounds and pence				
read, write and convert	time between analogue and digital 12- and 24-hour clocks				
Solve problems	involving converting from hours to minutes; minutes to seconds; years to months; weeks to days. Geometry - properties of shape				
Focus	Progression of skills				
compare and					
classify					geometric shapes, including quadrilaterals and triangles, based on
:---					
their properties and sizes					

Geometry - position and direction

Focus	Progression of skills
describe	positions on a 2-D grid as coordinates in the first quadrant
	movements between positions as translations of a given unit to the left/right and up/down
plot	specified points and draw sides to complete a given polygon.
	Statistics
Focus	Progression of skills
interpret and present	discrete and continuous data using appropriate graphical methods, including bar charts and time graphs.
solve problems	using information presented in bar charts, pictograms, tables and other graphs which involve: - comparison - sum - difference

	Year 4				
	Maths areas of focus	Arithmetic Practice (Speedy Maths) *indicates new content			Problem solving
$\begin{aligned} & \bar{E} \\ & \frac{5}{5} \\ & \frac{5}{4} \end{aligned}$	Number Place value		Know 2/3/4/5/6/10x tables and related facts at speed. Add pairs of tens at speed.	Know 10/100 more/less than 3-digit numbers. Add pairs of 2 -digit numbers $+/-1$-digit and 3 -digit numbers.	
			Know 2/3/4/5/6/10x tables and related facts at speed. Know pairs of numbers to 100.	Add 1-digit to 3 -digit numbers Know 100 more than any number.	$\frac{\text { Lianthouses }}{\text { MCfAP }}$
		*Know 9x table at speed	Add and subtract pairs of 1-digit and 2-digit numbers Know doubles and halves of tens	+/- 1-digit numbers and 3-digit numbers. Know pairs of numbers to 100 .	$\frac{\text { Straw Squares }}{\text { MCfAP }}$
		*Know pairs of tens to 90	Know 9x tables at speed and related \div facts for $2 \mathrm{x}, 3 \mathrm{x}, 4 \mathrm{x}, 5 \mathrm{x}, 6 \mathrm{x}, 10 \mathrm{x}$ at speed.	Add hundreds to 3 -digit numbers at speed. Know doubles and halves of tens.	$\begin{aligned} & \text { Sitting Round the } \\ & \text { Rartv Tables NRICH } \end{aligned}$
	Number Addition and subtraction	*Know 7x table at speed	Know 2/34/5/6/10x tables and related facts at speed. Know 9x table at speed.	x and \div any number by 10 , Know pairs of tens to $90,+/$ - tens with 3 -digit numbers	$\frac{\text { Zios and }}{\text { NRICHts }}$
			Know 7x/9x table at speed. +/- pairs of 2 -digit numbers at speed.	Know halves and doubles of numbers to 20. Know number bonds to 20.	$\frac{\text { Athousond seconds }}{\text { NZ Maths }}$
$\begin{aligned} & \text { N } \\ & \text { ह } \\ & 5 \\ & \frac{5}{4} \end{aligned}$		*Know 8x table at speed	Add and subtract hundreds and 3-digit numbers. Know pairs of numbers to 100 .	Know 2/3/4/5/6/10x tables and related \div facts at speed. Divide any number by 10 .	
	Measurement Area	*Give change from $£ 1$ at speed	Know 2/3/4/5/6/10x tables and related facts at speed. Know 8x table at speed.	Add and subtract tens with 3-digit numbers at speed. Know pairs of tens to 90 .	$\frac{\text { Three in a Line }}{\text { NZ Maths }}$
	Number Multiplication and division A	*Know 11x table at speed	Know 2/3/4/5/6/10x tables and related facts at speed. Give change from $£ 1$ at speed.	Know 7x, 8x, 9x table at speed. +/-pairs of 2-digit numbers at speed.	$\frac{\text { Super Darts }}{\text { NZ Maths }}$
		"Know pairs of numbers to 90	Know 7/8/9/11x tables and 2/3/4/5/6/10x tables and related \div facts at speed.	Know number bonds to 20 and related facts at speed.	$\frac{\text { Three Monkeys }}{\text { MCfAP }}$
		"Know 12x table at speed	Give change from $£ 1$ at speed Know pairs of numbers to 90 .		$\frac{\text { Five Coins }}{\text { NRich }}$
	Consolidation		+/- pairs of 2-digit numbers at speed. Know pairs of numbers to 100 .		$\begin{aligned} & \frac{\text { Half Time }}{\text { NRich }} \end{aligned}$
$\begin{aligned} & \text { 인 } \\ & \text { 듬 } \end{aligned}$	Number Multiplication and division B	*Continue simple number patterns	Know 2/3/4/5/6/10x tables and related facts at speed.	Give change from $£ 1$ at speed.	
		${ }^{*}$ Know all tables mixed at speed.	Continue simple number patterns Know pairs of numbers to 90 .	Add and subtract pairs of 2-digit numbers at speed.	$\frac{\text { Jo's Table }}{\text { NZ Matns }}$
		*Know simple equivalent fractions	Know all tables mixed at speed. Know pairs of numbers to 100 .	Continue simple number patterns	Unroveling sequences NPICH
	Measurement Length and perimeter	*Know pairs of tens to 180	Know simple equivalent fractions +/- pairs of 2-digit numbers at speed.	Know simple equivalent fractions. Know all tables mixed at speed.	
		${ }^{*}$ Convert cm to m and vice versa	Know pairs of numbers to 100 and pairs of tens to 180.	Know all tables and \div facts for $2 \mathrm{x}, 3 \mathrm{x}, 4 \mathrm{x}, 5 \mathrm{x}$, $6 x, 10 x$ at speed. Continue simple patterns.	$\frac{\text { Trianaular Numbers }}{\text { NZ Matns }}$
	Number Fractions		Know all tables mixed at speed. Convert cm to m and vice versa	Continue simple number patterns	$\frac{\text { Race to } 100}{\text { Nz Matns }}$
N을응		"Know division facts for 9x table at speed.	Add and subtract pairs of 2-digit numbers at speed. Know pairs of tens to 180.		Probiem saving sstatoges
		*Use tables facts to work out related x at speed.	Know simple equivalent fractions Know pairs of numbers to 90 .		
		${ }^{*}$ Know division facts for $7 x$ table at speed.	Convert cm to m and vice versa Continue simple number patterns	Use tables facts to work out related x at speed. Know pairs of tens to 180.	
	Number Decimals A	${ }^{*}$ Convert cm to mm and vice versa	Continue simple number patterns Know pairs of numbers to 100.		
		*Know division facts for $8 x$ table at speed.	Know simple equivalent fractions Give change from $£ 1$ at speed	Use tables facts to work out related x at speed. Convert cm to mm and vice versa.	
			$+/$ - pairs of 2-digit numbers at speed. Know pairs of tens to 180.	Use tables facts to work out related x at speed. Convert cm to mm and vice versa.	
$\begin{aligned} & \text { E } \\ & \text { E } \\ & \text { E } \end{aligned}$	Number Decimals B		Know all tables to 12×12 at speed. Add three 1 -aigit numbers at speed.	Use tables facts to work out related x at speed.	Probiem salving Sratogies Lesion
		*Know division facts for 11x table at speed.	Know pairs of numbers to 100 . Give change from $£ 1$ at speed	Know pairs of tens to 180 Add three 1-digit numbers at speed.	
	Measurement Money		Add and subtract pairs of 2-digit numbers at speed. Convert cm to mm and vice versa.	Use tables facts to work out related x at speed.	
		*Add three tens at speed.	Know pairs of numbers to 90 Add 3 1-digit numbers at speed	Continue simple number patterns	
	Measurement Time	"Know division facts for $12 x$ table at speed.	Add and subtract pairs of 2-digit numbers at speed.	Know pairs of tens to 180 Add three tens at speed.	
			Give change from $£ 1$ at speed	Use tables facts to work out related x at speed.	
$\begin{aligned} & \text { N } \\ & \text { n } \\ & \text { E } \\ & \text { E } \end{aligned}$	Consolidation		Add and subtract pairs of 2-digit numbers at speed. Add three tens at speed.	Convert cm to mm and vice versa Continue simple number patterns	Probiem solving Sratoges
	Geometry Shape	*Know all tables to 12×12 and \div facts at speed.	Know pairs of numbers to 100 . Add 3 1-digit numbers at speed.	Use tables facts to work out related x at speed.	
			Know all tables to 12×12 including division facts at speed. Know pairs of tens to 180.	Add and subtract pairs of 2-digit numbers at speed. Know pairs of numbers to 90 .	
	Statistics	*Use tables to work out related x and \div at speed.	Know all tables to 12×12 including division facts at speed.	Know pairs of numbers to 100 . Give change from £1 at speed	
	Geometry Position and direction		Know all tables to 12×12 including division facts at speed.	+/-pairs of 2-digit numbers at speed. Use tables facts to work out related x at speed.	
			Know all tables to 12×12 including division facts at speed. Add three tens at speed.		

Long Term Plan: Year 5

Milestones - By the end of Year 5, children will demonstrate...

By the end of Year 5 children are fluent in using written methods for all four operations. They make decisions about how to approach problems and work with whole and decimal numbers.

- Read, write, order and compare numbers to at least 1,000,000 and determine the value of each digit count forwards or backwards in steps of powers of 10 for any given number up to 1.000,000
- Interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers, including through zero.
- Round any number up to $1,000,000$ to the nearest $10,100,1,000,10,000$ and 100,000
- Read Roman numerals to , 1000 (M) and recognise years written in Roman numerals
- Add and subtract whole numbers with more than 4 digits, using formal written methods
- Solve addition and subtraction multi-step problems in context (such as length, money, mass and volume) deciding which operations and methods to use and why. They will use knowledge of factors, multiple, squares, cubes and scaling by simple fractions.
- Identify multiples and factors, including factor pairs of a number and common factors of two numbers
- Know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers.
- Establish whether a number to 100 is prime and recall prime numbers to 19.
- Multiply numbers up to 4-digits by a 1 or 2-digit number using a formal written method (long multiplication for 2-digit numbers)
- Divide numbers up to 4-digits by a 1 -digit number using a formal written method (short division) interpreting remainders appropriately for the context.
- Recognise and use square and cube numbers and their respective notation (${ }^{2}$ and ${ }^{3}$)
- Compare, order, add and subtract fractions whose denominators are all multiples of the same number
- Recognise mixed numbers and improper fractions and convert from one to the other
- Calculate and compare area using standard units (cm^{2} and m^{2})
- Know that angles are measured in degrees. Estimate and compare acute, obtuse and reflex angles.
- Identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed.

According to the National Curriculum, children should be taught:

The principal focus of mathematics teaching in upper Key Stage 2 is to ensure that pupils extend their understanding of the number system and place value to include larger integers. This should develop the connections that pupils make between multiplication and division with fractions, decimals, percentages and ratio.

At this stage, pupils should develop their ability to solve a wider range of problems, including increasingly complex properties of numbers and arithmetic, and problems demanding efficient written and mental methods of calculation. With this foundation in arithmetic, pupils are introduced to the language of algebra as a means for solving a variety of problems. Teaching in geometry and measures should consolidate and extend knowledge developed in number. Teaching should also ensure that pupils classify shapes with increasingly complex geometric properties and that they learn the vocabulary they need to describe them.

Pupils should read, spell and pronounce mathematical vocabulary correctly.

The new vocabulary the Year 5 children will use will include:

	Tier 1	Tier 2	Tier 3
Place Value	negative numbers, 1000 more/less, round	ten thousands, one hundred thousands, powers of, one million	millions, ten millions
Addition and subtraction	4-digit number, operations, written methods		
Multiplication and division	factor pairs, short multiplication, factor product, divisor, remainders	prime numbers, prime factors, composite numbers, square numbers (${ }^{2}$), cube numbers (3), short division, common factors, long multiplication, division bracket	long division, multi-digit number
Fractions/Decimals /Percentages	decimal, decimal places, decimal point, equivalence, hundredths, integer, convert, proper/improper fractions, mixed numbers	thousandths, per cent \%, complements, proportions	percentages
Measurement	rectilinear figure, area, perimeter, convert, decimal notation		
Geometry	isosceles, equilateral, scalene, trapezium, rhombus, parallelogram, geometric shapes, co-ordinates, first quadrant, grid, translation, plot, x / y axis, regular/irregular polygon	translation, reflection, square $\left(\mathrm{cm}^{2} / \mathrm{m}^{2}\right)$, volume ($\mathrm{cm}^{3} / \mathrm{m}^{3}$), metric/imperial units, inches (in), pounds (lb), pints (pt), reflex angles, angles on a straight line, angles around a point, missing angles, protractor, diagonals	radius, diameter circumference
Statistics	time graph, discrete/continuous data, interpre \dagger	timetable, comparison problems, sum problems, difference problems, line graph	pie chart, mean, average, data set

In Year 5, the children will be faught:
Number and Place Value

Focus	Progression of skills
count	in steps of powers of 10 for any given number up to at least 1000000 forwards or backwards
	forwards and backwards with positive and negative whole numbers including through zero
round	any number to (up to 1000000) to the nearest 10, 100, 1000, 10000 , 100000
read, write, compare and order	numbers up to at least 1000000 determining the place value of each digit
interpret	negative numbers in context
read	roman numerals to $1000(\mathrm{M})$ and recognise years written in roman numerals
solve problems	using all of the above (number and practical problems)
	Number - addition and subtraction
Focus	Progression of skills
add and subtract	whole numbers with more than four digits
	using columnar addition and subtraction where appropriate (written method)
	using mental methods with increasingly large numbers
use rounding	to check answers
	to determine levels of accuracy in the context of a problem
solve problems	multi-step addition and subtraction problems in context
	decide which operations and methods to use and why

Skill: Add numbers with more than four digits

Place value counters or plain counters on a place value grid are the most effective concrete resources when adding numbers with more than 4 digits.

At this stage, children should be encouraged to work in the abstract, using the column method to add larger numbers efficiently.

Place value counters and plain counters on a place value grid are the most effective manipulatives when adding decimals with 1,2 and then 3 decimal places.

Ensure children have experience of adding decimals with a variety of decimal places. This includes putting this into context when adding money and other measures.

Skill: Subtract numbers with more than four digits

$$
294,382-182,501=111,881
$$

Place value counters or plain counters on a place value grid are the most effective concrete resource when subtracting numbers with more than 4 digits.

At this stage, children should be encouraged to work in the abstract, using column method to subtract larger numbers efficiently.

Skill: Subtract with up to 3 decimal places

Place value counters and plain counters on a place value grid are the most effective manipulative when subtracting decimals with 1, 2 and then 3 decimal places.

Ensure children have experience of subtracting decimals with a variety of decimal places. This includes putting this into context when subtracting money and other measures

Focus	Progression of skills
identify	multiples and factors
	all factor pairs for a number
	all common factors for two numbers
know	and use the vocabulary of prime numbers, prime factors and composite (non-prime numbers)
	all prime numbers to 19
	how to establish whether a number up to 100 is prime
multiply	numbers up to 4-digits by 1-digit or 2-digit numbers using a formal written method including long multiplication for 2-digit numbers
	Mentally by drawing upon known facts
divide	numbers up to 4-digits by a one-digit number using formal written method (short division)
	interpret remainders appropriately for the context
multiply and divide	whole numbers and decimals by 10, 100, 1000

Skill: Multiply 4-digit numbers by 1-digit numbers

$1,826 \times 3=5,478$

When multiplying 4- digit numbers, place value counters are the best manipulative to use to support children in their understanding of the formal written method.

If children are multiplying larger numbers and struggling with their times tables, encourage the use of multiplication grids so children can focus on the use of the written method.
Skill: Multiply 2-digit numbers by 2-digit numbers

$$
234 \times 32=7,488
$$

\times	200	30	4
30	6,000	900	120
2	400	60	8

Children can continue to use the area model when multiplying 3- digits by $2-$ digits. Place value counters become more efficient to use but Base 10 can be used to highlight the size of numbers.

Children should now move towards the formal written method, seeing the links with the grid method.

Skill: Multiply 4-digit numbers by 2-digit numbers

Skill: Divide 3-digits by 1-digit numbers (grouping)

Children can continue to use grouping to support their understanding of short division when dividing a 3 -digit number by a 1 -digit number.

Place value counters or plain counters can be used on a place value grid to support this understanding.

Children can also draw their own counters and group them through a more pictorial method.

Skill: Divide 4-digits by 1-digit numbers (grouping)

$8,532 \div 2=4,266$
Place value counters or plain counters can be used on a place value grid to support children to divide 4 - digits by 1-digit. Children can also draw their own counters and group them through a more pictorial method.

Children should be encouraged to move away from the concrete and pictorial when dividing numbers with multiple exchanges.

Focus	Progression of skills
compare and order	fractions whose denominators are all multiples of the same number
identify, name and write	equivalent fractions of a given fraction represented visually including tenths and hundredths
recognise	mixed numbers and improper fractions and convert from one to the other
write	mathematical statements >1 as a mixed number e.g. $\frac{2}{5}+\frac{4}{5}=\frac{6}{5}=1 \frac{2}{5}$
add and subtract	fractions with the same denominator
	fractions where the denominators are multiples of the same number
multiply	proper fractions and mixed numbers by whole numbers supported by materials and diagrams
read and write	decimal numbers as fractions
recognise and use	thousandths and relate them to tenths, hundredths and decimal equivalents
round	numbers with 2 decimal places to the nearest whole number, and to 1 decimal place
read, write, order and compare	numbers with up to 3 decimal places
recognise	the per cent symbol (\%)
understand	that per cent relates to the number of parts per hundred
write	percentages as a fraction with denominator 100
	percentages as a decimal
solve problems	involving numbers up to 3 decimal places
	Requiring knowledge of decimal and percentage equivalents of $1 / 2$, $1 / 4^{\prime}, 1 / 5^{2} / 5,4 / 5$ and those fractions with a denominator of a multiple of 10 or 25 .

Measurement

Focus	Progression of skills
convert	between different units of measurement (e.g. km and m; cm and m; g and kg ; litre and ml)
understand and use	approximate equivalences between metric and common imperial units (inches, pounds, pints, miles)
measure and calculate	the perimeter of composite rectilinear shapes in cm and m
calculate and compare	area of rectangles (including squares) using cm^{2} and m^{2}
estimate	area of irregular shapes
	volume and capacity
Solve problems	involving: - converting between units of time - using all four operations and involving measure (length, mass, volume, money, time) - using decimal notation, - including scaling
	Geometry
Focus	Progression of skills
identify	3-D shapes, including cubes and cuboids from 2-D representations
	angles at a point and one whole turn (360 $)$
	angles at a point on a straight line and $1 / 2$ a turn (180°)
	other multiples of 90°
know	angles are measured in degrees
estimate and compare	acute, obtuse and reflex angles
draw	given angles and measure them in degrees
deduce	related facts from properties of rectangles finding missing lengths and angles
distinguish	between regular and irregular polygons based on reasoning about equal sides and angles
identify, describe and represent	position of a shape following a reflection or translation: - using appropriate language including coordinates in the first quadrant - knowing that the shape has not changed.
	Statistics
Focus	Progression of skills
solve problems	comparison, sum and difference problems using information presented in a line graph
complete, read and interpret	information in tables, including timetables

	Year 5					
	Maths areas of focus	Arithmetic Practice (Speedy Maths) *indicates new content				Problem solving
-	Number Place Value		Know all tables to 12×12 including division facts at speed. Convert cm to m .		Know pairs of numbers to 100 Add and subtract pairs of 2-digit numbers.	
			Know all tables to 12×12 including division facts at speed.		Add and subtract pairs of 2-digit numbers at speed. Know pairs of numbers to 100 .	$\begin{aligned} & \text { Area and Perimeter } \\ & \text { NRICH } \end{aligned}$
			Add and subtract pairs of 2-digit numbers at speed. Know pairs of numbers to 100 .		Use tables to work out related x and \div at speed. Continue simple number patterns	$\frac{\text { Make } 5 \text { Numbers }}{\text { MCfAP }}$
	Number Addition and subtraction		Give change from £1 at speed Know pairs of tens to 180		Add three tens at speed. Convert cm to mm and vice versa	$\frac{\text { Half Time }}{\text { NRich }}$
		"Know pairs of numbers to 180.	Add and subtract pairs of 2-digit numbers at speed. Continue simple number patterns		Use tables to work out related x and \div at speed.	$\frac{\text { Soot the Shapes } 2}{\text { MCfAP }}$
	Number Multiplication and division A	${ }^{*}$ Convert m to $k m$ and vice versa	Know all tables to 12×12 including division facts at speed. Know pairs of numbers to 90 .		Know pairs of numbers to 180. Convert cm to m and vice versa	$\frac{\text { Peter's String }}{\text { NZ Maths }}$
$\begin{gathered} \text { N } \\ \frac{1}{E} \\ \frac{D}{3} \end{gathered}$			Convert m to km and vice versa Know pairs of numbers to 100.		Use tables to work out related x and \div at speed.	
		*Convert L to ml and vice versa	+/-pairs of 2 -digit numbers at speed. Give change from $£ 1$ at speed. Add three tens at speed.		Convert m to km and vice versa, Continue simple number patterns.	$\frac{\text { Three Digits }}{\text { MCfAP }}$
	Number Fractions A	*Know pairs of hundreds to 1000 .	Know all tables to 12×12 including division facts at speed. Know pairs of numbers to 180 .		Convert cm to mm and vice versa Convert L to ml and vice versa	$\frac{\text { Make } 37}{\text { NRich }}$
		"Add 2-digit to 3-digit numbers	+/- pairs of 2-digit numbers at speed. Know pairs of hundreds to 1000 and pairs of numbers to 180.		Know all tables to 12×12 including \div facts at speed. Convert cm to m and vice versa	$\frac{\text { Sticks investigation }}{\text { Twinkl }}$
			Know all tables to 12×12 including division facts at speed.		Use tables to work out related x and \div at speed. Add 2-digit to 3 -digit numbers.	$\begin{gathered} \text { Darts } \\ \text { Nz Maths } \end{gathered}$
		+/- pairs of 2-digit numbers at speed. Add three tens at speed. Convert L to ml and vice versa.		Know pairs of numbers to 90 and pairs of hundreds to 1000. Use tables to work out related x and \div at speed.		$\frac{\text { Button Up Some More }}{\text { NRich }}$
한흥	Number Multiplication and division B	Know pairs of number/hundreds to 100 . Add 2-digit to 3 -digit numbers		Use tables to work out related x and \div at speed. Convert cm to mm and vice versa		
		Add and subtract pairs of 2-digit numbers at speed. Convert cm to m and vice versa.		Know all tables to 12×12 including division facts at speed. Know pairs of numbers to 180.		$\frac{\text { Times Tables Shifts }}{\text { NRICH }}$
		Know all tables to 12×12 including \div facts at speed. Convert L to ml and vice versa		Subtract 2-dig from 3 -dig numbers. Use tables to work out related x and \div at speed.		$\frac{\text { Shakina Hands }}{\text { Nz Matns }}$
	Number Fractions B	Convert m to km and vice versa. Know pairs of hundreds to 1000. Continue simple number patterns.		Subtract 2-dig from 3 -dig numbers. Give change from $£ 1$ at speed.		$\frac{\text { Window Framas }}{\text { NRICH }}$
		+/- pairs of 2-digit numbers at speed. $+/-2$-digit and 3 -digit numbers at speed.		Convert m to km and vice versa. Convert L to ml and vice versa. Add p to $£ \& p$.		$\frac{\mathrm{Nicem} \text { or } \mathrm{Nasty}}{\mathrm{NRICH}}$
	Number Decimals and percentages	Know pairs of numbers to 180 . Use tables to work out related x and \div at speed. Add p to $£ \& \mathrm{p}$.		+/- 2-digit and 3 -digit numbers at speed. Subtract p from £. Add three tens at speed.		$\frac{\text { Sara's Table }}{\text { NZ Matns }}$
N을흥		+/- pairs of 2-digit numbers at speed. +/- 2-dig and 3-dig numbers at speed. Continue simple number patterns.		Know all tables to 12×12 including division facts at speed. Convert L to ml and vice versa. Subtract p from $£ \& \mathrm{p}$.		Prodiom solvng Stratoges
		+/- pairs of 2-digit numbers at speed. Add and subtract p from $£ \&$ p		Convert m to km and vice versa		
	Measures Perimeter and area	Know all tables to 12×12 including division facts at speed. $+/-$ p from \&\&p. Know pairs of numbers to 100.		Convert L to ml and vice versa Use tables to work out related x and \div at speed.		
		Give change from $£ 1$ at speed. Convert cm to mm and vice versa. Know pairs of numbers to 180 .		Add and subtract 2-dig and 3-dig numbers at speed. Continue simple number patterns.		
	Statistics	+/- pairs of 2 -digit numbers at speed. +/- p from $£ \&$ p. Know pairs of hundreds to 1000 .		Know all tables to 12×12 including division facts at speed. Know pairs of numbers to 90 .		
		Know pairs of numbers to 90 Convert L to ml and vice versa		Add three tens at speed. Add and subtract p from $£ \& p$		
$\begin{aligned} & \text { E } \\ & \text { E } \\ & 5 \\ & 5 \end{aligned}$	Geometry Shape	Know all tables to 12×12 including \div facts at speed. Convert cm to mm and vice versa		+/- 2-dig and 3 -dig numbers at speed. Add three tens at speed. Convert L to ml and vice versa.		$\xrightarrow{\text { Probiom Solvng Strateges }}$
		+/- pairs of 2-digit numbers at speed. Convert m to km and vice versa		Know all tables to 12×12 including division facts at speed. + and - p from £\&p		
		$+/-2$-digit and 3 -digit numbers at speed. Continue simple number patterns. Know number bonds to 1000 (tens).		Know all tables to 12×12 including aivision facts at speed. Know pairs of numbers to 100 .		
	Geometry Position and direction	$+/$ - pairs of 2-digit numbers at speed. Know pairs of numbers to 180 . + /- p from £\&p.		Convert L to ml and vice versa. $+/-2$-digit and 3 -digit numbers at speed.		
		Know pairs of numbers to 100 . +/- pairs of 2 -digit numbers at speed.		Convert m to km and vice versa.		
	Number Decimals	Give change from $£ 1$ at speed. Know number bonds to 1000 (tens).		Know all tables to 12×12 including division facts at speed. Know pairs of numbers to 90 .		
$\begin{aligned} & \text { N } \\ & \text { E } \\ & \text { E } \end{aligned}$		+/- 2-digit and 3-digit numbers at speed. Continue simple number patterns.		Know pairs of numbers to 90 . Convert m to km and vice versa. +/- p from £\&p		Prociom solung Strategios
		+/- pairs of 2-digit numbers at speed. Convert L to ml and vice versa		$+/-2$-digit and 3 -digit numbers at speed. Add three tens at speed.		
	Number Negative numbers	Know all tables to 12×12 including division facts at speed. Convert cm to m and vice versa		$+/-3$-digit and 1 -digit numbers. Give change from $£ 1$ at speed. Add three 1 -digit numbers at speed.		
	Measurement Converling units	Know pairs of numbers to 180. Add and subtract 2 -digit and 3 -digit numbers at speed.		Add and subtract p from £\&p		
		+/- pairs of 2-digit numbers at speed. Convert m to km and vice versa. Add three 1 -digit numbers at speed.		+/- 2-digit and 3-digit numbers at speed. Know all tables to 12×12 including division facts at speed.		
	Measurement Volume	Know all tables to 12×12 including division facts at speed. Know number bonds to 1000 (tens)		Add and subtract 2 -digit and 3 -digit numbers at speed. Add and subtract p from $£ \& p$		

Long Term Plan: Year 6

Milestones - By the end of Year 6, children will demonstrate...

Children in Year 6 apply their mathematical skills and knowledge to solve increasingly complex problems. They explain their thinking and move fluently between contexts seeking patterns, testing conjectures and approaching confidently from different angles.

- Use negative numbers in context, and calculate intervals across zero
- Round any whole number to a required degree of accuracy
- Solve problems involving the relative sizes of two quantities where missing values can be found by using integer multiplication and division facts
- Use common factors to simplify fractions; use common multiples to express fractions in the same denomination
- Solve problems involving the calculation of percentages [for example, of measures, and such as 15% of 360] and the use of percentages for comparison
- Multiply 1-digit numbers with up to two decimal places by whole numbers
- Perform mental calculations, including with mixed operations with large numbers
- Divide numbers up to 4 digits by a two-digit number using the written method of short division where appropriate, interpreting remainders according to the context
- Use knowledge of the order of operations to carry out calculations involving the four operations
- Use knowledge of order of operations to carry out calculations involving all four operations
- Add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions
- Multiply simple pairs of proper fractions by whole numbers [for example, $1 / 3 \div 2=1 / 6$]
- Associate a fraction with division and calculate decimal fraction equivalents for example, 0.375 for a simple fraction for example, $3 / 8$
- Express missing number problems algebraically
- Find pairs of numbers that satisfy number sentences involving two unknowns

According to the National Curriculum, children should be taught:

The principal focus of mathematics teaching in upper Key Stage 2 is to ensure that pupils extend their understanding of the number system and place value to include larger integers. This should develop the connections that pupils make between multiplication and division with fractions, decimals, percentages and ratio.

At this stage, pupils should develop their ability to solve a wider range of problems, including increasingly complex properties of numbers and arithmetic, and problems demanding efficient written and mental methods of calculation. With this foundation in arithmetic, pupils are introduced to the language of algebra as a means for solving a variety of problems. Teaching in geometry and measures should consolidate and extend knowledge developed in number. Teaching should also ensure that pupils classify shapes with increasingly complex geometric properties and that they learn the vocabulary they need to describe them.

By the end of Year 6, pupils should be fluent in written methods for all four operations, including long multiplication and division, and in working with fractions, decimals and percentages. Pupils should read, spell and pronounce mathematical vocabulary correctly.

The new vocabulary the Year 6 children will use will include:

	Tier 1	Tier 2	Tier 3
Place Value	ten thousands, one hundred thousands, powers of, one million	millions, ten millions	
Multiplication and division	prime numbers, prime factors, composite numbers, square numbers (${ }^{2}$), cube numbers (3), short division, common factors, long multiplication, division bracket	multi-digit number, long division	order of operations, dividend, quotient,
Fractions/Decimals /Percentages	thousandths, per cent \%, complements, proportions		highest common factor, lowest common multiple, lowest common denominator
Ratio and proportion		relative size, missing values, integer multiplication, percentages, scale factor, unequal sharing and grouping	proportion, notation, enlarge, enlargement
Algebra		formulae, linear number, algebraically, equation, unknowns, combinations, variables	rule, term, substitute, generalise
Geometry	translation, reflection, square ($\mathrm{cm}^{2} / \mathrm{m}^{2}$), volume ($\mathrm{cm}^{3} / \mathrm{m}^{3}$), metric/imperial units, inches (in), pounds (lb), pints (pt), reflex angles, angles on a straight line, angles around a point, missing angles, protractor, diagonals	radius, diameter, circumference, vertically opposite, four quadrants, co-ordinate plane	dimensions, isometric, concentric, vertically opposite angles
Statistics	timetable, comparison problems, sum problems, difference problems, line graph	pie chart, mean, average, data set	sectors, frequency, category

In Year 6, the children will be faught:

Number and Place Value

Focus	Progression of skills
read, write, order and compare	numbers up to 10000000 and determine the value of each digit.
round	any whole number to a required degree of accuracy
use	negative numbers in context including calculating intervals across zero
solve	number and practical problems that involve all of the above.
Number - addition, subtraction, multiplication and division	
Focus	Progression of skills
multiply	multi-digit numbers up to 4 digits by a 2-digit whole number using the written method of long multiplication.
divide	numbers up to 4 digits by a two-digit whole number using the written method of long division
	interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context.
	numbers up to 4 digits by a two-digit number using the written method of short division where appropriate, interpreting remainders according to the context
mentally calculate	including with mixed operations and large numbers
identify	common factors, common multiples and prime numbers
use	knowledge of the order of operations to carry out calculations involving the four operations
solve problems	Using addition and subtraction in multi-step problems in contexts
	deciding which operations and methods to use and why

$104,328+61,731=166,059$

Skill: Subtract numbers with more than four digits

$$
294,382-182,501=111,881
$$

Place value counters or plain counters on a place value grid are the most effective concrete resource when subtracting numbers with more than 4 digits.

At this stage, children should be encouraged to work in the abstract, using column method to subtract larger numbers efficiently.

Skill: Subtract with up to 3 decimal places

Place value counters and plain counters on a place value grid are the most effective manipulative when subtracting decimals with 1, 2 and then 3 decimal places.

Ensure children have experience of subtracting decimals with a variety of decimal places. This includes putting this into context when subtracting money and other measures.

TTh	Th	\mathbf{H}	T	\mathbf{O}
	2	7	3	9
\times			2	8
2	5^{1}	3^{9}	7^{1}	2
$\mathbf{2}^{5}$	4	7	8	0
7	6	6	9	2

$$
2,739 \times 28=76,692
$$

When multiplying 4- digits by 2-digits, children should be confident in using the formal written method. If they are still struggling with times tables, provide multiplication grids to support when they are focusing on the use of the method.

Consider where exchanged digits are placed and make sure this is consistent.

Skill: Divide multi-digit numbers by 2-digits (short division)

$432 \div 12=36$

$7,335 \div 15=489$

15	30	45	60	75	90	105	120	135	150

When children begin to divide up to 4 - digits by 2 digits, written methods become the most accurate as concrete and pictorial representations become less effective.

Children can write out multiples to support their calculations with larger remainders.

Children will also solve problems with remainders where the quotient can be rounded as appropriate.

Skill: Divide multi-digit numbers by 2-digits (long division)

Children can also divide by 2-digit numbers using long division.

Children can write out multiples to support their calculations with larger remainders.

Children will also solve problems with remainders where the quotient can be rounded as appropriate.

Skill: Divide multi-digit numbers by 2-digits (long division)

Number - fractions, decimals and percentages

Focus	Progression of skills
use	common factors to simplify fractions
	common multiples to express fractions in the same denomination
compare and order	fractions, including fractions > 1
add and subtract	fractions with different denominators and mixed numbers, using the concept of equivalent fractions
multiply	simple pairs of proper fractions, writing the answer in its simplest form for example, $14 \times 12=18$
	one-digit numbers with up to two decimal places by whole numbers
divide	proper fractions by whole numbers [for example, $1 / 3 \div 2=1 / 6$)
	using written division methods in cases where the answer has up to two decimal places
associate	a fraction with division and calculate decimal fraction equivalents for example, 0.375 for a simple fraction for example, $3 / 8$
identify	the value of each digit in numbers given to three decimal places and multiply and divide numbers by 10,100 and 1000 giving answers up to three decimal places
solve problems	which require answers to be rounded to specified degrees of accuracy
recall and use	equivalences between simple fractions, decimals and percentages, including in different contexts.

Ratio and proportion

Focus	Progression of skills
solve problems	involving the relative sizes of two quantities where missing values can be found by using integer multiplication and division facts
	involving the calculation of percentages [for example, of measures, and such as 15% of 360] and the use of percentages for comparison
	involving similar shapes where the scale factor is known or can be found
	involving unequal sharing and grouping using knowledge of fractions and multiples.
Algebra	
Focus	Progression of skills
use	simple formulae
generate and describe	linear number sequences
express	missing number problems algebraically
find	pairs of numbers that satisfy an equation with two unknowns
enumerate	possibilities of combinations of two variables
	Measurement
Focus	Progression of skills
solve problems	involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate
use, read, write and convert	between standard units
	converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit, and vice versa
	using decimal notation to up to three decimal places
convert	between miles and kilometres
recognise	that shapes with the same areas can have different perimeters and vice versa
	when it is possible to use formulae for area and volume of shapes
calculate	the area of parallelograms and triangles
Calculate, estimate and compare	volume of cubes and cuboids using standard units, including cubic centimetres $\left(\mathrm{cm}^{3}\right)$ and cubic metres $\left(\mathrm{m}^{3}\right)$, and extending to other units for example, mm^{3} and km^{3}

Geometry

Focus	Progression of skills
draw	2-D shapes using given dimensions and angles
recognise, describe and build	simple 3-D shapes, including making nets
compare and classify	geometric shapes based on their properties and sizes
find	unknown angles in any triangles, quadrilaterals, and regular polygons
illustrate and name	parts of circles, including radius, diameter and circumference and know that the diameter is twice the radius
recognise	angles where they meet at a point, are on a straight line, or are vertically opposite, and find missing angles.
describe	positions on the full coordinate grid (all four quadrants)
draw and translate	simple shapes on the coordinate plane, and reflect them in the axes
	Statistics
Focus	Progression of skills
interpret and construct	pie charts and line graphs and use these to solve problems
Calculate \& interpret	the mean as an average

	Year 6 *Y6 team may alter the order of what is taught in the Spring/Summer terms due to preparation for their NCTs.					
	Maths areas of focus	Arithmetic Practice (Speedy Maths) *indicates new content				Problem solving
-	Number Place value	+/- 2-digit numbers from hundreds at speed. Calculate x and \div using tables at speed.		Know all tables to 12×12 including division facts at speed.		
		Convert ml to L and vice versa X and \div using tables facts at speed.		Know pairs of numbers to 90 Add and subtract pairs of 2-digit numbers		$\frac{\text { Finding Fifteen }}{\text { NRICH }}$
	Number Addition,	"Know common equivalent FDP.	+/- pairs of 2-digit numbers at speed. Know pairs of numbers to 100.		Know all tables to 12×12 including facts at speed. Convert cm to mm and vice versa.	$\frac{\text { All Square }}{\text { MCfAP }}$
	subtraction, multiplication and division	*Know square numbers to 12^{2}	Give change from $£ 1$ at speed. $+/-p$ from £\&p. Know common equivalent FDP.		Convert cm to m and vice versa. Know pairs of numbers to 90 . Know all tables to 12×12 incluaing facts at speed.	$\frac{\text { Reach } 100}{\text { NRICH }}$
	$(\mathrm{FD}$	*Know square roots to $\sqrt{ } 144$ (ie for tables)	Know all tables to 12×12 including \div facts at speed. Know square numbers to 12^{2}		Know common equivalent FDP. Know pairs of numbers to 100 and 180.	$\frac{\text { Alber Square }}{\text { Mcfap }}$
	Decima Percent	$+/$ - pairs of 2-digit numbers at speed. Convert m to km and vice versa. Know pairs of numbers to 90 .		Know common equivalent FDP. +/- 2 -digit and 3 -digit numbers at speed. Continue simple number patterns.		$\frac{\text { My Son is Naughty }}{\text { Nz Matns }}$
$\begin{aligned} & \text { N } \\ & \text { है } \\ & \frac{5}{4} \end{aligned}$		$\begin{array}{\|l} \text { +/- pairs of 2-digit numbers at speed. +/- p from } £ \& \text { p } \\ \text { Know square roots to } \sqrt{1} 44 \text { (ie for tables) } \end{array}$		Use tables to work out related x and \div at speed. Know number bonds to 1000 (tens)		
	Number Fractions A	Know pairs of numbers to 100 . Use tables to work out related x and \div at speed. Know square numbers to 12^{2} Convert cm to mm and vice versa		Convert m to km and vice versa. +/- 2 -digit and 3 -digit numbers at speed. Continue simple number patterns.		$\begin{gathered} \text { Darts } \\ \text { Nz Matns } \end{gathered}$
		Know all tables to 12×12 including \div facts at speed. Convert L to ml and vice versa.		Convert cm to m and vice versa. $+/-\mathrm{p}$ from $£ \& \mathrm{p}$ Know pairs of numbers to 180.		$\frac{\text { Bus Router }}{\text { MCfAP }}$
	Number Fractions B	Know all tables to 12×12 including \div facts at speed. Convert m to km and vice versa.		Use tables to work out related x and \div at speed. +/- pairs of 2-dig numbers at speed. Know common equivalent FDP.		$\frac{50 \text {. } \text { the clock }}{\text { NRich }}$
		+/- pairs of 2-digit numbers at speed. Know all tables to 12×12 including division facts at speed.		Know square numbers to 12^{2}. Know pairs of numbers to 180. Add three tens at speed.		$\frac{\text { Join the Dots }}{\text { Twinkl }}$
	Measurement Converting units	Give change from $\mathrm{\Sigma} 1$ at speed. Know all tables to 12×12 including \div facts at speed. Continue simple number patterns. +/- 2 -digit and 3 -digit numbers at speed.		Know common equivalent FDP. Know square roots to $\sqrt{144}$ (ie for tables). Use tables to work out related x and \div at speed.		$\frac{\text { coded } 100 \text { square }}{\text { NRich }}$
$\begin{aligned} & \text { \# } \\ & \text { og } \\ & \text { 듬 } \end{aligned}$	Number Ratio	Know pairs of numbers to 90 . Know common equivalent FDP.		Convert L to ml and vice versa. Know number bonds to 1000 (tens). Convert cm to m and vice versa		
		+/- pairs of 2-dig numbers at speed. Use tables to work out related x and \div at speed. Convert cm to mm and vice versa		Convert m to km and vice versa. Add three tens at speed. +/-2-digit and 3 -dig numbers at speed. +/- p from $£ \&$.		$\frac{\text { Sticky Trianaler }}{\text { NRICH }}$
	Number Algebra	Know all tables to 12×12 including \div facts at speed. Know square numbers and square roots to 12^{2}		Know common equivalent FDP. Know pairs of numbers to 180.		$\frac{\text { Iaples without Tens }}{\text { NRICH }}$
		+/- pairs of 2-digit numbers at speed. Know pairs of numbers to 100 . Convert m to km and vice versa.		Know all tables to 12×12 including \div facts at speed. Use tables to work out related x and \div at speed.		$\xrightarrow[\mathrm{NROLCS}]{ }$
	Number Decimals	+/- pairs of 2-digit numbers at speed. Use tables to work out related x and \div at speed.		+/- 2-digit and 3 -digit numbers at speed. Continue simple number patterns. Convert m to km and vice versa.		$\frac{\text { The Candle Problem }}{\text { PNS }}$
		Know pairs of numbers to 100 . Know all tables to 12×12 including division facts at speed.		Know pairs of numbers to 180. Know square numbers and square roots to 12^{2}		$\frac{\text { Xavi's T-Shitr }}{\text { NRICH }}$
$\begin{aligned} & \text { * } \\ & \text { o } \\ & \text { 듬 } \end{aligned}$	Number Fractions, decimals and percentages	Know pairs of numbers to 90 . Know common equivalent FDP. +/- p from £\&p.		Know number bonds to 1000 (tens). +/- 2-digit and 3-digit numbers at speed. Convert cm to mm and vice versa		Froblem saving sratoges Lesion
		Add and subtract pairs of 2 -digit numbers at speed. Use tables to work out related x and \div at speed.		Give change from $£ 1$ at speed Convert I to ml and vice versa		
	Measurement Area, perimeter and volume	+/- pairs of 2 -digit numbers at speed. know square numbers and square roots to 12^{2} continue simple number patterns.		Know all tables to 12×12 including \div facts at speed. +/- 2 digit and 3 -digit numbers at speed.		
		Use tables to work out related x and \div at speed. Know all tables to 12×12 including :facts at speed.		Know common equivalent FDP. +/- pairs of 2-digit numbers at speed.		
	Statistics	Add and subtract pairs of 2 -digit numbers at speed. Know all tables to 12×12 including division facts at speed.		Know pairs of numbers to 180. Convert cm to m and vice versa		
		Know common equiva Use tables to work out	ient FDP. related x and \div at speed.	$\begin{aligned} & +/-2-0 \\ & \text { numb } \end{aligned}$	git and 3 -digit numbers at speed. Continue simple patterns. +/- pairs of 2-digit numbers at speed.	
$\begin{aligned} & \stackrel{*}{6} \\ & \frac{1}{6} \\ & \text { E } \end{aligned}$	Geometry Shape	Know pairs of numbers to 100 . Know common equivalent FDP.		Convert m to km and vice versa Use tables to work out related x and \div at speed.		$\underset{\substack{\text { Probiem Solving Shatogies } \\ \text { Lesson }}}{ }$
		+/- pairs of 2-digit numbers at speed. Use tables to work out related x and \div at speed. Know pairs of numbers to 90		Know square numbers and square roots to 12^{2} Convert m to km and vice versa		
		Know common equivalent FDP. Continue simple number patterns.		$+/-2$-digit and 3 -digit numbers at speed. Know all tables to 12×12 including \div facts at speed.		
	Geometry Position and direction	Add and subtract pairs of 2-digit numbers at speed. Know square numbers and square roots to 12^{2}.		Add and subtract 2-digit and 3-digit numbers at speed. Continue simple number patterns.		
	Themed projects, consolidation and problem solving.	Know pairs of numbers to 100 and 180		Know all tables to 12×12 including division facts at speed.		
		Know square numbers and square roots to 12^{2}		Convert m to km and vice versa		
$\begin{aligned} & \text { ※ } \\ & \text { あ } \\ & \text { E } \\ & \text { E } \end{aligned}$		Add and subtract pairs of 2-digit numbers at speed.		Continue simple number patterns		$\underset{\substack{\text { Probiem Solving Sratoges } \\ \text { lesson }}}{ }$
		Know pairs of numbers to 90 . Know common equivalent FDP.		Add and subtract 2-digit and 3-digit numbers at speed.		
		Add and subtract pairs of 2-digit numbers at speed. Know all tables to 12×12 including division facts at speed.		Know pairs of numbers to 180.		
		Know pairs of numbers to 100.		Convert L to ml and vice versa		
		Add and subtract pairs of 2-digit numbers at speed.		Continue simple number patterns		
		Know all tables to 12×12 including division facts at speed.		Continue simple number patterns		

Problem solving - whole school overview

	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Year 1					U	$\stackrel{\cup}{\oplus}$
Year 2						
Year 3						
Year 4						
Year 5						

Progression in reasoning skills

Describing

I can describe what I did.

Explaining

I can offer some reasons for what I did.
Convincing
I am confident that my reasoning is correct (*even if it's not!) and I can try to convince you that I'm right. Justifying
I can use words like 'therefore', 'that means that', 'that leads to' to justify a correct logical argument with a complete chain of reasoning.

Proving

I can make a watertight argument that is mathematically sound.

